Cargando…

Changes in the concentrations of vitamin E analogs and their metabolites in rat liver and kidney after oral administration

Vitamin E analog, such as α- and γ-tocopherol, can undergo ω-oxidation without cleavage of the chroman ring, and this pathway is responsible for generation of the major urinary vitamin E metabolite, carboxyethyl hydroxychroman. However, it is still unclear how carboxyethyl hydroxychroman is changed...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiyose, Chikako, Saito, Kazuki, Yachi, Rieko, Muto, Chie, Igarashi, Osamu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345175/
https://www.ncbi.nlm.nih.gov/pubmed/25759520
http://dx.doi.org/10.3164/jcbn.14-107
Descripción
Sumario:Vitamin E analog, such as α- and γ-tocopherol, can undergo ω-oxidation without cleavage of the chroman ring, and this pathway is responsible for generation of the major urinary vitamin E metabolite, carboxyethyl hydroxychroman. However, it is still unclear how carboxyethyl hydroxychroman is changed in various tissues after vitamin E intake. We therefore investigated changes in the concentrations of α- and γ-tocopherol and their metabolites in rat liver and kidney. The concentration of α-tocopherol in rat liver increased until 6 h after oral administration, and then decreased. The change in the concentration of α-carboxyethyl hydroxychroman in rat liver in the α-Toc group slowly increased until 12 h after oral administration. Cytochrome P450 3A1 mRNA expression significantly increased from 12 h after the start of α-tocopherol administration. The change in the concentration of γ-carboxyethyl hydroxychroman in rat liver in the γ-Toc group markedly increased until 12 h after oral administration. On the other hand, γ-carboxyethyl hydroxychroman in rat kidney showed greater accumulation than α-carboxyethyl hydroxychroman from 3 h to 24 h after oral administration. From these results, we considered that γ-carboxyethyl hydroxychroman formed in the liver continues to be released into the bloodstream and is transported to the kidney rapidly.