Cargando…
Functionalised Mn(VI)-nanoparticles: an advanced high-valent magnetic catalyst
We discover Mn(VI)-nanoparticles (NPs) bearing functional groups, high oxidation state, strong electron affinity, unique redox and paramagnetic nature, which opens up a new avenue to catalysis, magnetism and material application. However, its synthesis is challenging and remains unexplored because o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345317/ https://www.ncbi.nlm.nih.gov/pubmed/25727767 http://dx.doi.org/10.1038/srep08636 |
Sumario: | We discover Mn(VI)-nanoparticles (NPs) bearing functional groups, high oxidation state, strong electron affinity, unique redox and paramagnetic nature, which opens up a new avenue to catalysis, magnetism and material application. However, its synthesis is challenging and remains unexplored because of associated serious difficulties. A simple benign synthetic strategy is devised to fabricate the high-valent NPs using mild reducing agent bromide, which transformed Mn(VII) to valuable Mn(VI)-species. The EELS-imaging of individual elements, ESI-MS, XPS and other techniques established its composition as Br(Me(3)SiO)Mn(VI)O(2). It revealed significantly improved magnetic moment (SQUID) with isotropic hyperfine splitting of six line spectrum (EPR). The high-oxidation state and incorporated-ligands of the metals present on the active surface of the NPs led to development of a general catalytic process for oxidative heterodifunctionalisation to C-C triple bond towards formation of a new O-C/N-C/S-C and C-C coupling cum cyclisation to biologically important flavones and their aza- and marcapto-analogues, and valuable enaloxy synthons. |
---|