Cargando…

METABOLISM OF IRON STORES

Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, a...

Descripción completa

Detalles Bibliográficos
Autor principal: SAITO, HIROSHI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nagoya University 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345694/
https://www.ncbi.nlm.nih.gov/pubmed/25741033
_version_ 1782359608834129920
author SAITO, HIROSHI
author_facet SAITO, HIROSHI
author_sort SAITO, HIROSHI
collection PubMed
description Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects.
format Online
Article
Text
id pubmed-4345694
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nagoya University
record_format MEDLINE/PubMed
spelling pubmed-43456942015-03-04 METABOLISM OF IRON STORES SAITO, HIROSHI Nagoya J Med Sci Review Article Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. Nagoya University 2014-08 /pmc/articles/PMC4345694/ /pubmed/25741033 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Review Article
SAITO, HIROSHI
METABOLISM OF IRON STORES
title METABOLISM OF IRON STORES
title_full METABOLISM OF IRON STORES
title_fullStr METABOLISM OF IRON STORES
title_full_unstemmed METABOLISM OF IRON STORES
title_short METABOLISM OF IRON STORES
title_sort metabolism of iron stores
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345694/
https://www.ncbi.nlm.nih.gov/pubmed/25741033
work_keys_str_mv AT saitohiroshi metabolismofironstores