Cargando…

Development of antifertility vaccine using sperm specific proteins

Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be p...

Descripción completa

Detalles Bibliográficos
Autor principal: Bandivdekar, A.H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345757/
https://www.ncbi.nlm.nih.gov/pubmed/25673547
_version_ 1782359623312867328
author Bandivdekar, A.H.
author_facet Bandivdekar, A.H.
author_sort Bandivdekar, A.H.
collection PubMed
description Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be promising antigens for contraceptive vaccine includes lactate dehydrogenase (LDH-C4), protein hyaluronidase (PH-20), and Eppin. Immunization with LDH-C4 reduced fertility in female baboons but not in female cynomolgus macaques. Active immunization with PH-20 resulted in 100 per cent inhibition of fertility in male guinea pigs but it induced autoimmune orchitis. Immunization with Eppin elicited high antibody titres in 78 per cent of immunized monkeys and induced infertility but the immunopathological effect of immunization was not examined. Human sperm antigen (80kDa HSA) is a sperm specific, highly immunogenic and conserved sperm protein. Active immunization with 80kDa HSA induced immunological infertility in male and female rats. Partial N-terminal amino acid sequence of 80kDa HSA (Peptide NT) and its peptides (Peptides 1, 2, 3 and 4) obtained by enzymatic digestion did not show homology with any of the known proteins in gene bank. Peptides NT, 1, 2 and 4 were found to mimic immunobiological activity of native protein. Passive administration of antibodies to peptides NT, 1, 2 and 4 induced infertility in male and female rats and peptide 1 was found to be most effective in suppressing fertility. Active immunization with keyhole limpet haemocynin (KLH) conjugated synthetic peptide 1 impaired fertility in all the male rabbits and six of the seven male marmosets. The fertility was restored following decline in antibody titre. All these findings on 80kDA HAS suggest that the synthetic Peptide-1 of 80kDa HSA is the promising candidate for development of male contraceptive vaccine.
format Online
Article
Text
id pubmed-4345757
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-43457572015-03-05 Development of antifertility vaccine using sperm specific proteins Bandivdekar, A.H. Indian J Med Res Review Article Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be promising antigens for contraceptive vaccine includes lactate dehydrogenase (LDH-C4), protein hyaluronidase (PH-20), and Eppin. Immunization with LDH-C4 reduced fertility in female baboons but not in female cynomolgus macaques. Active immunization with PH-20 resulted in 100 per cent inhibition of fertility in male guinea pigs but it induced autoimmune orchitis. Immunization with Eppin elicited high antibody titres in 78 per cent of immunized monkeys and induced infertility but the immunopathological effect of immunization was not examined. Human sperm antigen (80kDa HSA) is a sperm specific, highly immunogenic and conserved sperm protein. Active immunization with 80kDa HSA induced immunological infertility in male and female rats. Partial N-terminal amino acid sequence of 80kDa HSA (Peptide NT) and its peptides (Peptides 1, 2, 3 and 4) obtained by enzymatic digestion did not show homology with any of the known proteins in gene bank. Peptides NT, 1, 2 and 4 were found to mimic immunobiological activity of native protein. Passive administration of antibodies to peptides NT, 1, 2 and 4 induced infertility in male and female rats and peptide 1 was found to be most effective in suppressing fertility. Active immunization with keyhole limpet haemocynin (KLH) conjugated synthetic peptide 1 impaired fertility in all the male rabbits and six of the seven male marmosets. The fertility was restored following decline in antibody titre. All these findings on 80kDA HAS suggest that the synthetic Peptide-1 of 80kDa HSA is the promising candidate for development of male contraceptive vaccine. Medknow Publications & Media Pvt Ltd 2014-11 /pmc/articles/PMC4345757/ /pubmed/25673547 Text en Copyright: © Indian Journal of Medical Research http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Article
Bandivdekar, A.H.
Development of antifertility vaccine using sperm specific proteins
title Development of antifertility vaccine using sperm specific proteins
title_full Development of antifertility vaccine using sperm specific proteins
title_fullStr Development of antifertility vaccine using sperm specific proteins
title_full_unstemmed Development of antifertility vaccine using sperm specific proteins
title_short Development of antifertility vaccine using sperm specific proteins
title_sort development of antifertility vaccine using sperm specific proteins
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345757/
https://www.ncbi.nlm.nih.gov/pubmed/25673547
work_keys_str_mv AT bandivdekarah developmentofantifertilityvaccineusingspermspecificproteins