Cargando…
Successful treatment of severe sepsis and diarrhea after vagotomy utilizing fecal microbiota transplantation: a case report
INTRODUCTION: Dysbiosis of intestinal microbiota likely plays an important role in the development of gut-derived infections, making it a potential therapeutic target against sepsis. However, experience with fecal microbiota transplantation (FMT) in the treatment of sepsis and knowledge of the under...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346118/ https://www.ncbi.nlm.nih.gov/pubmed/25881250 http://dx.doi.org/10.1186/s13054-015-0738-7 |
Sumario: | INTRODUCTION: Dysbiosis of intestinal microbiota likely plays an important role in the development of gut-derived infections, making it a potential therapeutic target against sepsis. However, experience with fecal microbiota transplantation (FMT) in the treatment of sepsis and knowledge of the underlying mechanisms are extremely lacking. In this article, we describe a case of a patient who developed sepsis after a vagotomy and later received an infusion of donor feces microbiota, and we report our findings. METHODS: A 44-year-old woman developed septic shock and severe watery diarrhea 4 days after undergoing a vagotomy. Antibiotics, probiotics and supportive treatment strategies were used for about 30 day after surgery, but the patient’s fever, bacteremia and watery diarrhea persisted. Considering the possibility of intestinal dysbiosis, we evaluated the structure and composition of the patient’s fecal microbiota using 16S rDNA-based molecular techniques. As expected, the gut microbiota was extensively disrupted; therefore, a donor fecal suspension was delivered into the patient by nasoduodenal tube. The patient’s clinical outcomes and shifts of the gut microbiota following the treatment were also determined. RESULTS: Dramatically, the patient’s septic symptoms and severe diarrhea were successfully controlled following FMT. Her stool output markedly declined after 7 days and normalized 16 days after FMT. A significant modification in her microbiota composition was consistently seen, characterized by a profound enrichment of the commensals in Firmicutes and depletion of opportunistic organisms in Proteobacteria. Furthermore, we identified a reconstituted bacterial community enriched in Firmicutes and depleted of Proteobacteria members that was associated with fecal output, plasma markers of inflammation and T helper cells. CONCLUSIONS: In this report, we describe our initial experience with FMT, in which we successfully used it in the treatment of a patient with sepsis and severe diarrhea after a vagotomy. Our data indicate an association between repaired intestinal microbiota barrier and improvement of clinical outcomes. Our patient’s surprising clinical benefits from FMT demonstrate the role of intestinal microbiota in modulating immune equilibrium. It represents a breakthrough in the clinical management of sepsis and suggests new therapeutic avenues to pursue for microbiota-related indications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-015-0738-7) contains supplementary material, which is available to authorized users. |
---|