Cargando…

Effect of Donor Age on the Proportion of Mesenchymal Stem Cells Derived from Anterior Cruciate Ligaments

The characteristics of anterior cruciate ligament (ACL)-derived mesenchymal stem cells (MSCs), such as proportion and multilineage potential, can be affected by donor age. However, the qualitative and quantitative features of ACL MSCs isolated from younger and older individuals have not yet been com...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dae-Hee, Ng, Joanne, Kim, Sang-Beom, Sonn, Chung Hee, Lee, Kyung-Mi, Han, Seung-Beom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346262/
https://www.ncbi.nlm.nih.gov/pubmed/25729860
http://dx.doi.org/10.1371/journal.pone.0117224
Descripción
Sumario:The characteristics of anterior cruciate ligament (ACL)-derived mesenchymal stem cells (MSCs), such as proportion and multilineage potential, can be affected by donor age. However, the qualitative and quantitative features of ACL MSCs isolated from younger and older individuals have not yet been compared directly. This study assessed the phenotypic and functional differences in ACL-MSCs isolated from younger and older donors and evaluated the correlation between ACL-MSC proportion and donor age. Torn ACL remnants were harvested from 36 patients undergoing ACL reconstruction (young: 29.67 ± 10.92 years) and 33 undergoing TKA (old: 67.96 ± 5.22 years) and the proportion of their MSCs were measured. The mean proportion of MSCs was slightly higher in older ACL samples of the TKA group than of the younger ACL reconstruction group (19.69 ± 8.57% vs. 15.33 ± 7.49%, p = 0.024), but the proportions of MSCs at passages 1 and 2 were similar. MSCs from both groups possessed comparable multilineage potentiality, as they could be differentiated into adipocytes, osteocytes, and chondrocytes at similar level. No significant correlations were observed between patient age and MSC proportions at passages 0–2 or between age and MSC proportion in both the ACL reconstruction and TKA groups. Multiple linear regression analysis found no significant predictor of MSC proportion including donor age for each passage. Microarray analysis identified several genes that were differentially regulated in ACL-MSCs from old TKA patients compared to young ACL reconstruction patients. Genes of interest encode components of the extracellular matrix (ECM) and may thus play a crucial role in modulating tissue homeostasis, remodeling, and repair in response to damage or disease. In conclusion, the proportion of freshly isolated ACL-MSC was higher in elderly TKA patients than in younger patients with ACL tears, but their phenotypic and multilineage potential were comparable.