Cargando…

An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide

Laser frequency combs, sources with a spectrum consisting of hundred thousands evenly spaced narrow lines, have an exhilarating potential for new approaches to molecular spectroscopy and sensing in the mid-infrared region. The generation of such broadband coherent sources is presently under active e...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuyken, Bart, Ideguchi, Takuro, Holzner, Simon, Yan, Ming, Hänsch, Theodor W., Van Campenhout, Joris, Verheyen, Peter, Coen, Stéphane, Leo, Francois, Baets, Roel, Roelkens, Gunther, Picqué, Nathalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346629/
https://www.ncbi.nlm.nih.gov/pubmed/25697764
http://dx.doi.org/10.1038/ncomms7310
_version_ 1782359720876572672
author Kuyken, Bart
Ideguchi, Takuro
Holzner, Simon
Yan, Ming
Hänsch, Theodor W.
Van Campenhout, Joris
Verheyen, Peter
Coen, Stéphane
Leo, Francois
Baets, Roel
Roelkens, Gunther
Picqué, Nathalie
author_facet Kuyken, Bart
Ideguchi, Takuro
Holzner, Simon
Yan, Ming
Hänsch, Theodor W.
Van Campenhout, Joris
Verheyen, Peter
Coen, Stéphane
Leo, Francois
Baets, Roel
Roelkens, Gunther
Picqué, Nathalie
author_sort Kuyken, Bart
collection PubMed
description Laser frequency combs, sources with a spectrum consisting of hundred thousands evenly spaced narrow lines, have an exhilarating potential for new approaches to molecular spectroscopy and sensing in the mid-infrared region. The generation of such broadband coherent sources is presently under active exploration. Technical challenges have slowed down such developments. Identifying a versatile highly nonlinear medium for significantly broadening a mid-infrared comb spectrum remains challenging. Here we take a different approach to spectral broadening of mid-infrared frequency combs and investigate CMOS-compatible highly nonlinear dispersion-engineered silicon nanophotonic waveguides on a silicon-on-insulator chip. We record octave-spanning (1,500–3,300 nm) spectra with a coupled input pulse energy as low as 16 pJ. We demonstrate phase-coherent comb spectra broadened on a room-temperature-operating CMOS-compatible chip.
format Online
Article
Text
id pubmed-4346629
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-43466292015-03-13 An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide Kuyken, Bart Ideguchi, Takuro Holzner, Simon Yan, Ming Hänsch, Theodor W. Van Campenhout, Joris Verheyen, Peter Coen, Stéphane Leo, Francois Baets, Roel Roelkens, Gunther Picqué, Nathalie Nat Commun Article Laser frequency combs, sources with a spectrum consisting of hundred thousands evenly spaced narrow lines, have an exhilarating potential for new approaches to molecular spectroscopy and sensing in the mid-infrared region. The generation of such broadband coherent sources is presently under active exploration. Technical challenges have slowed down such developments. Identifying a versatile highly nonlinear medium for significantly broadening a mid-infrared comb spectrum remains challenging. Here we take a different approach to spectral broadening of mid-infrared frequency combs and investigate CMOS-compatible highly nonlinear dispersion-engineered silicon nanophotonic waveguides on a silicon-on-insulator chip. We record octave-spanning (1,500–3,300 nm) spectra with a coupled input pulse energy as low as 16 pJ. We demonstrate phase-coherent comb spectra broadened on a room-temperature-operating CMOS-compatible chip. Nature Pub. Group 2015-02-20 /pmc/articles/PMC4346629/ /pubmed/25697764 http://dx.doi.org/10.1038/ncomms7310 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Kuyken, Bart
Ideguchi, Takuro
Holzner, Simon
Yan, Ming
Hänsch, Theodor W.
Van Campenhout, Joris
Verheyen, Peter
Coen, Stéphane
Leo, Francois
Baets, Roel
Roelkens, Gunther
Picqué, Nathalie
An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
title An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
title_full An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
title_fullStr An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
title_full_unstemmed An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
title_short An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
title_sort octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346629/
https://www.ncbi.nlm.nih.gov/pubmed/25697764
http://dx.doi.org/10.1038/ncomms7310
work_keys_str_mv AT kuykenbart anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT ideguchitakuro anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT holznersimon anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT yanming anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT hanschtheodorw anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT vancampenhoutjoris anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT verheyenpeter anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT coenstephane anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT leofrancois anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT baetsroel anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT roelkensgunther anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT picquenathalie anoctavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT kuykenbart octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT ideguchitakuro octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT holznersimon octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT yanming octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT hanschtheodorw octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT vancampenhoutjoris octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT verheyenpeter octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT coenstephane octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT leofrancois octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT baetsroel octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT roelkensgunther octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide
AT picquenathalie octavespanningmidinfraredfrequencycombgeneratedinasiliconnanophotonicwirewaveguide