Cargando…

Experimental and Theoretical Study of O-Substituent Effect on the Fluorescence of 8-Hydroxyquinoline

The synthesis and characterization of different ether and ester derivatives of 8-hydroxyquinoline have been made. UV-visible and fluorescence spectra of these compounds have revealed spectral dependence on both solvent and O-substituent. The fluorescence intensity of ether derivatives revealed highe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zayed, Mohie E. M., El-Shishtawy, Reda M., Elroby, Shaaban A., Obaid, Abdullah Y., Al-amshany, Zahra M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346927/
https://www.ncbi.nlm.nih.gov/pubmed/25674853
http://dx.doi.org/10.3390/ijms16023804
Descripción
Sumario:The synthesis and characterization of different ether and ester derivatives of 8-hydroxyquinoline have been made. UV-visible and fluorescence spectra of these compounds have revealed spectral dependence on both solvent and O-substituent. The fluorescence intensity of ether derivatives revealed higher intensity for 8-octyloxyquinoline compared with 8-methoxyquinoline, whereas those of ester derivatives had less fluorescence than 8-hydroxyquinoline. Theoretical calculations based on Time-dependent density functional theory (TD-DFT) were carried out for the quinolin-8-yl benzoate(8-OateQ) compound to understand the effect of O-substituent on the electronic absorption of 8-hydroxyquinaline (8-HQ). The calculations revealed comparable results with those obtained from the experimental data. Optimized geometrical structure was calculated with DFT at B3LYP/6-311++G** level of theory. The results indicated that 8-OateQ is not a coplanar structure. The absorption spectra of the compound were computed in gas-phase and solvent using B3LYP and CAM-B3LYP methods with 6-311++G ** basis set. The agreement between calculated and experimental wavelengths was very good at CAM-B3LYP/6-311++G** level of theory.