Cargando…

Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors

Phosphorylation by kinases is an important post-translational modification of proteins. It is a critical control for the regulation of vital cellular activities, and its dysregulation is implicated in several diseases. A common drug discovery approach involves, therefore, time-consuming screenings o...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhalla, Nikhil, Di Lorenzo, Mirella, Pula, Giordano, Estrela, Pedro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346972/
https://www.ncbi.nlm.nih.gov/pubmed/25732235
http://dx.doi.org/10.1038/srep08687
Descripción
Sumario:Phosphorylation by kinases is an important post-translational modification of proteins. It is a critical control for the regulation of vital cellular activities, and its dysregulation is implicated in several diseases. A common drug discovery approach involves, therefore, time-consuming screenings of large libraries of candidate compounds to identify novel inhibitors of protein kinases. In this work, we propose a novel method that combines localized surface plasmon resonance (LSPR) and electrolyte insulator semiconductor (EIS)-based proton detection for the rapid identification of novel protein kinase inhibitors. In particular, the selective detection of thiophosphorylated proteins by LSPR is achieved by changing their resonance properties via a pre-binding with gold nanoparticles. In parallel, the EIS field-effect structure allows the real-time electrochemical monitoring of the protein phosphorylation by detecting the release of protons associated with the kinases activity. This innovative combination of both field-effect and nanoplasmonic sensing makes the detection of protein phosphorylation more reliable and effective. As a result, the screening of protein kinase inhibitors becomes more rapid, sensitive, robust and cost-effective.