Cargando…
Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles
We propose a hierarchical pipeline for skull-stripping and segmentation of anatomical structures of interest from T1-weighted images of the human brain. The pipeline is constructed based on a two-level Bayesian parameter estimation algorithm called multi-atlas likelihood fusion (MALF). In MALF, esti...
Autores principales: | Tang, Xiaoying, Crocetti, Deana, Kutten, Kwame, Ceritoglu, Can, Albert, Marilyn S., Mori, Susumu, Mostofsky, Stewart H., Miller, Michael I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347448/ https://www.ncbi.nlm.nih.gov/pubmed/25784852 http://dx.doi.org/10.3389/fnins.2015.00061 |
Ejemplares similares
-
Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool
por: Liang, Zifei, et al.
Publicado: (2015) -
Test–retest reproducibility of a multi‐atlas automated segmentation tool on multimodality brain MRI
por: Rezende, Thiago J. R., et al.
Publicado: (2019) -
Computational analysis of LDDMM for brain mapping
por: Ceritoglu, Can, et al.
Publicado: (2013) -
Direct estimation of patient attributes from anatomical MRI based on multi-atlas voting
por: Wu, Dan, et al.
Publicado: (2016) -
Cerebellar gray matter and lobular volumes correlate with core autism symptoms
por: D'Mello, Anila M., et al.
Publicado: (2015)