Cargando…
BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes
BACKGROUND: Accurately predicting the binding affinities of large sets of protein-ligand complexes is a key challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. Since a scoring function (SF) is used to score, rank, and identi...
Autores principales: | Ashtawy, Hossam M, Mahapatra, Nihar R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347622/ https://www.ncbi.nlm.nih.gov/pubmed/25734685 http://dx.doi.org/10.1186/1471-2105-16-S4-S8 |
Ejemplares similares
-
Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins
por: Ashtawy, Hossam M, et al.
Publicado: (2015) -
AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks
por: Kwon, Yongbeom, et al.
Publicado: (2020) -
Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme
por: Leong, Max K., et al.
Publicado: (2017) -
Approaching the limits: scoring functions for affinity prediction
por: Sotriffer, Christoph
Publicado: (2010) -
Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases
por: Kumar, Alok
Publicado: (2020)