Cargando…

Kidney injury molecule-1 as a predicting factor for inflamed kidney, diabetic and diabetic nephropathy Egyptian patients

BACKGROUND: Kidney injury molecule-1 (KIM-1), a recently discovered transmembrane protein, is expressed in dedifferentiated proximal renal tubular epithelial cells in damaged regions. Kidney injury early detection in diabetic patients has great importance for therapy and prognosis. Therefore, the ai...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Samia A, Hamed, Manal A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347934/
https://www.ncbi.nlm.nih.gov/pubmed/25741477
http://dx.doi.org/10.1186/s40200-015-0131-8
Descripción
Sumario:BACKGROUND: Kidney injury molecule-1 (KIM-1), a recently discovered transmembrane protein, is expressed in dedifferentiated proximal renal tubular epithelial cells in damaged regions. Kidney injury early detection in diabetic patients has great importance for therapy and prognosis. Therefore, the aim of the present study is to predict, validate and evaluate the presence of KIM-1 in kidney inflammation, dialectic and diabetic nephropathy diseases. METHODS: Sixty males and females subjects (30-52 years) were selected for this study. They were subdivided into three main groups; kidney injury, diabetic and diabetic nephropathy patients. The work was extended to evaluate KIM-1 after treatment of each disease. RESULTS: The results revealed significant elevation of KIM-1 in the diseased groups and a noticeable reduction after treatment. Diabetic nephropathy recorded the highest KIM-1 level than the AKI state or the diabetic patients. We noticed an association between KIM-1 and sex and a positive correlation (p < 0.0001) with the disease severity. CONCLUSIONS: In conclusion, urinary KIM-1 has been reported to be a noninvasive, rapid, sensitive, and reproducible biomarker to detect early kidney injury. We speculate that KIM-1 is expected to be a therapeutic target for kidney injury.