Cargando…

An enhanced method for human action recognition

This paper presents a fast and simple method for human action recognition. The proposed technique relies on detecting interest points using SIFT (scale invariant feature transform) from each frame of the video. A fine-tuning step is used here to limit the number of interesting points according to th...

Descripción completa

Detalles Bibliográficos
Autores principales: Moussa, Mona M., Hamayed, Elsayed, Fayek, Magda B., El Nemr, Heba A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348441/
https://www.ncbi.nlm.nih.gov/pubmed/25750750
http://dx.doi.org/10.1016/j.jare.2013.11.007
_version_ 1782359920766615552
author Moussa, Mona M.
Hamayed, Elsayed
Fayek, Magda B.
El Nemr, Heba A.
author_facet Moussa, Mona M.
Hamayed, Elsayed
Fayek, Magda B.
El Nemr, Heba A.
author_sort Moussa, Mona M.
collection PubMed
description This paper presents a fast and simple method for human action recognition. The proposed technique relies on detecting interest points using SIFT (scale invariant feature transform) from each frame of the video. A fine-tuning step is used here to limit the number of interesting points according to the amount of details. Then the popular approach Bag of Video Words is applied with a new normalization technique. This normalization technique remarkably improves the results. Finally a multi class linear Support Vector Machine (SVM) is utilized for classification. Experiments were conducted on the KTH and Weizmann datasets. The results demonstrate that our approach outperforms most existing methods, achieving accuracy of 97.89% for KTH and 96.66% for Weizmann.
format Online
Article
Text
id pubmed-4348441
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-43484412015-03-07 An enhanced method for human action recognition Moussa, Mona M. Hamayed, Elsayed Fayek, Magda B. El Nemr, Heba A. J Adv Res Original Article This paper presents a fast and simple method for human action recognition. The proposed technique relies on detecting interest points using SIFT (scale invariant feature transform) from each frame of the video. A fine-tuning step is used here to limit the number of interesting points according to the amount of details. Then the popular approach Bag of Video Words is applied with a new normalization technique. This normalization technique remarkably improves the results. Finally a multi class linear Support Vector Machine (SVM) is utilized for classification. Experiments were conducted on the KTH and Weizmann datasets. The results demonstrate that our approach outperforms most existing methods, achieving accuracy of 97.89% for KTH and 96.66% for Weizmann. Elsevier 2015-03 2013-12-05 /pmc/articles/PMC4348441/ /pubmed/25750750 http://dx.doi.org/10.1016/j.jare.2013.11.007 Text en © 2013 Production and hosting by Elsevier B.V. on behalf of Cairo University. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
spellingShingle Original Article
Moussa, Mona M.
Hamayed, Elsayed
Fayek, Magda B.
El Nemr, Heba A.
An enhanced method for human action recognition
title An enhanced method for human action recognition
title_full An enhanced method for human action recognition
title_fullStr An enhanced method for human action recognition
title_full_unstemmed An enhanced method for human action recognition
title_short An enhanced method for human action recognition
title_sort enhanced method for human action recognition
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348441/
https://www.ncbi.nlm.nih.gov/pubmed/25750750
http://dx.doi.org/10.1016/j.jare.2013.11.007
work_keys_str_mv AT moussamonam anenhancedmethodforhumanactionrecognition
AT hamayedelsayed anenhancedmethodforhumanactionrecognition
AT fayekmagdab anenhancedmethodforhumanactionrecognition
AT elnemrhebaa anenhancedmethodforhumanactionrecognition
AT moussamonam enhancedmethodforhumanactionrecognition
AT hamayedelsayed enhancedmethodforhumanactionrecognition
AT fayekmagdab enhancedmethodforhumanactionrecognition
AT elnemrhebaa enhancedmethodforhumanactionrecognition