Cargando…
Repetitive genomic insertion of gene-sized dsDNAs by targeting the promoter region of a counter-selectable marker
Genome engineering can be used to produce bacterial strains with a wide range of desired phenotypes. However, the incorporation of gene-sized DNA fragments is often challenging due to the intricacy of the procedure, off-target effects, and low insertion efficiency. Here we report a genome engineerin...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348660/ https://www.ncbi.nlm.nih.gov/pubmed/25736821 http://dx.doi.org/10.1038/srep08712 |
Sumario: | Genome engineering can be used to produce bacterial strains with a wide range of desired phenotypes. However, the incorporation of gene-sized DNA fragments is often challenging due to the intricacy of the procedure, off-target effects, and low insertion efficiency. Here we report a genome engineering method enabling the continuous incorporation of gene-sized double-stranded DNAs (dsDNAs) into the Escherichia coli genome. DNA substrates are inserted without introducing additional marker genes, by synchronously turning an endogenous counter-selectable marker gene ON and OFF. To accomplish this, we utilized λ Red protein-mediated recombination to insert dsDNAs within the promoter region of a counter-selectable marker gene, tolC. By repeatedly switching the marker gene ON and OFF, a number of desired gene-sized dsDNAs can be inserted consecutively. With this method, we successfully inserted approximately 13 kb gene clusters to generate engineered E. coli strains producing 1,4-butanediol (1,4-BDO). |
---|