Cargando…

Genetic and Genomic Toolbox of Zea mays

Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to st...

Descripción completa

Detalles Bibliográficos
Autores principales: Nannas, Natalie J., Dawe, R. Kelly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349061/
https://www.ncbi.nlm.nih.gov/pubmed/25740912
http://dx.doi.org/10.1534/genetics.114.165183
Descripción
Sumario:Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox.