Cargando…
Visualizing Peripheral Nerve Regeneration by Whole Mount Staining
Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these ev...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349735/ https://www.ncbi.nlm.nih.gov/pubmed/25738874 http://dx.doi.org/10.1371/journal.pone.0119168 |
_version_ | 1782360074278141952 |
---|---|
author | Dun, Xin-peng Parkinson, David B. |
author_facet | Dun, Xin-peng Parkinson, David B. |
author_sort | Dun, Xin-peng |
collection | PubMed |
description | Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries. |
format | Online Article Text |
id | pubmed-4349735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43497352015-03-17 Visualizing Peripheral Nerve Regeneration by Whole Mount Staining Dun, Xin-peng Parkinson, David B. PLoS One Research Article Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries. Public Library of Science 2015-03-04 /pmc/articles/PMC4349735/ /pubmed/25738874 http://dx.doi.org/10.1371/journal.pone.0119168 Text en © 2015 Dun, Parkinson http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dun, Xin-peng Parkinson, David B. Visualizing Peripheral Nerve Regeneration by Whole Mount Staining |
title | Visualizing Peripheral Nerve Regeneration by Whole Mount Staining |
title_full | Visualizing Peripheral Nerve Regeneration by Whole Mount Staining |
title_fullStr | Visualizing Peripheral Nerve Regeneration by Whole Mount Staining |
title_full_unstemmed | Visualizing Peripheral Nerve Regeneration by Whole Mount Staining |
title_short | Visualizing Peripheral Nerve Regeneration by Whole Mount Staining |
title_sort | visualizing peripheral nerve regeneration by whole mount staining |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349735/ https://www.ncbi.nlm.nih.gov/pubmed/25738874 http://dx.doi.org/10.1371/journal.pone.0119168 |
work_keys_str_mv | AT dunxinpeng visualizingperipheralnerveregenerationbywholemountstaining AT parkinsondavidb visualizingperipheralnerveregenerationbywholemountstaining |