Cargando…
The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets
Binary classifiers are routinely evaluated with performance measures such as sensitivity and specificity, and performance is frequently illustrated with Receiver Operating Characteristics (ROC) plots. Alternative measures such as positive predictive value (PPV) and the associated Precision/Recall (P...
Autores principales: | Saito, Takaya, Rehmsmeier, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349800/ https://www.ncbi.nlm.nih.gov/pubmed/25738806 http://dx.doi.org/10.1371/journal.pone.0118432 |
Ejemplares similares
-
Precrec: fast and accurate precision–recall and ROC curve calculations in R
por: Saito, Takaya, et al.
Publicado: (2017) -
Model-Based ROC Curve: Examining the Effect of Case Mix and Model Calibration on the ROC Plot
por: Sadatsafavi, Mohsen, et al.
Publicado: (2021) -
Plotting receiver operating characteristic and precision–recall curves from presence and background data
por: Li, Wenkai, et al.
Publicado: (2021) -
Plot Locator: An app for locating plots in the field
por: Boudell, Jere A., et al.
Publicado: (2019) -
An Extension of the Bland–Altman Plot for Analyzing the Agreement of More than Two Raters
por: Möller, Sören, et al.
Publicado: (2021)