Cargando…

The individualistic fallacy, ecological studies and instrumental variables: a causal interpretation

The validity of ecological studies in epidemiology for inferring causal relationships has been widely challenged as observed associations could be biased by the Ecological Fallacy. We reconsider the important design components of ecological studies, and discuss the conditions that may lead to spurio...

Descripción completa

Detalles Bibliográficos
Autores principales: Loney, Tom, Nagelkerke, Nico J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350299/
https://www.ncbi.nlm.nih.gov/pubmed/25745504
http://dx.doi.org/10.1186/1742-7622-11-18
Descripción
Sumario:The validity of ecological studies in epidemiology for inferring causal relationships has been widely challenged as observed associations could be biased by the Ecological Fallacy. We reconsider the important design components of ecological studies, and discuss the conditions that may lead to spurious associations. Ecological associations are useful and valid when the ecological exposures can be interpreted as Instrumental Variables. A suitable example may be a time series analysis of environmental pollution (e.g. particulate matter with an aerodynamic diameter of <10 micrometres; PM(10)) and health outcomes (e.g. hospital admissions for acute myocardial infarction) as environmental pollution levels are a cause of individual exposure levels and not just an aggregate measurement. Ecological exposures may also be employed in situations (perhaps rare) where individual exposures are known but their associations with health outcomes are confounded by unknown or unquantifiable factors. Ecological associations have a notorious reputation in epidemiology and individualistic associations are considered superior to ecological associations because of the “ecological fallacy”. We have argued that this is incorrect in situations in which ecological or aggregate exposures can serve as an instrumental variable and associations between individual exposure and outcome are likely to be confounded by unmeasured variables.