Cargando…
Role of p38 mitogen-activated protein kinase in vascular endothelial aging: Interaction with Arginase-II and S6K1 signaling pathway
p38 mitogen-activated protein kinase (p38) regulates cellular senescence and senescence-associated secretory phenotype (SASP), i.e., secretion of cytokines and/or chemokines. Previous work showed that augmented arginase-II (Arg-II) and S6K1 interact with each other to promote endothelial senescence...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350325/ https://www.ncbi.nlm.nih.gov/pubmed/25635535 |
Sumario: | p38 mitogen-activated protein kinase (p38) regulates cellular senescence and senescence-associated secretory phenotype (SASP), i.e., secretion of cytokines and/or chemokines. Previous work showed that augmented arginase-II (Arg-II) and S6K1 interact with each other to promote endothelial senescence through uncoupling of endothelial nitric oxide synthase (eNOS). Here we demonstrate eNOS-uncoupling, augmented expression/secretion of IL-6 and IL-8, elevation of p38 activation and Arg-II levels in senescent endothelial cells. Silencing Arg-II or p38α in senescent cells recouples eNOS and inhibits IL-6 and IL-8 secretion. Overexpression of Arg-II in young endothelial cells causes eNOS-uncoupling and enhances IL-6 and IL-8 expression/secretion, which is prevented by p38 inhibition or by antioxidant. Moreover, p38 activation and expression of IL-6 and KC (the murine IL-8 homologue) are increased in the heart and/or aortas of wild type (WT) old mice, which is abolished in mice with Arg-II gene deficiency (Arg-II(−/−)). In addition, inhibition of p38 in the old WT mice recouples eNOS function and reduces IL-6 and KC expression in the aortas and heart. Silencing Arg-II or p38α or S6K1 inhibits each other in senescence endothelial cells. Thus, Arg-II, p38, and S6K1 form a positive circuit which regulates endothelial senescence and cardiovascular aging. |
---|