Cargando…
Impact of missing data imputation methods on gene expression clustering and classification
BACKGROUND: Several missing value imputation methods for gene expression data have been proposed in the literature. In the past few years, researchers have been putting a great deal of effort into presenting systematic evaluations of the different imputation algorithms. Initially, most algorithms we...
Autores principales: | de Souto, Marcilio CP, Jaskowiak, Pablo A, Costa, Ivan G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350881/ https://www.ncbi.nlm.nih.gov/pubmed/25888091 http://dx.doi.org/10.1186/s12859-015-0494-3 |
Ejemplares similares
-
Clustering cancer gene expression data: a comparative study
por: de Souto, Marcilio CP, et al.
Publicado: (2008) -
On the selection of appropriate distances for gene expression data clustering
por: Jaskowiak, Pablo A, et al.
Publicado: (2014) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Missing value imputation improves clustering and interpretation of gene expression microarray data
por: Tuikkala, Johannes, et al.
Publicado: (2008) -
Impact of Missing Value Imputation on Classification for DNA Microarray Gene Expression Data—A Model-Based Study
por: Sun, Youting, et al.
Publicado: (2010)