Cargando…
Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae)
Vegetation clearing, land modification and agricultural intensification have impacted on many ecological communities around the world. Understanding how species respond to fragmentation and the scales over which functionality is retained, can be critical for managing biodiversity in agricultural lan...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350918/ https://www.ncbi.nlm.nih.gov/pubmed/25742183 http://dx.doi.org/10.1371/journal.pone.0119498 |
_version_ | 1782360254686691328 |
---|---|
author | Broadhurst, Linda |
author_facet | Broadhurst, Linda |
author_sort | Broadhurst, Linda |
collection | PubMed |
description | Vegetation clearing, land modification and agricultural intensification have impacted on many ecological communities around the world. Understanding how species respond to fragmentation and the scales over which functionality is retained, can be critical for managing biodiversity in agricultural landscapes. Allocasuarina verticillata (drooping sheoak, drooping she-oak) is a dioecious, wind-pollinated and -dispersed species with key conservation values across southeastern Australia. But vegetation clearing associated with agricultural expansion has reduced the abundance and spatial distribution of this species in many regions. Spatial genetic structure, relatedness among trees, pollen dispersal and mating patterns were examined in fragmented A. verticillata populations selected to represent the types of remnants that now characterise this species. Short scale spatial genetic structure (5–25 m) and relatedness among trees were observed in most populations. Unexpectedly, the two male trees closest to each female did not have a reproductive advantage accounting for only 4–15% of the seed produced in larger populations. Biparental inbreeding was also generally low (<4%) with limited evidence of seed crop domination by some male trees. More male trees contributed to seed crops in linear remnants (mean 17) compared to those from patch remnants (mean 11.3) which may reflect differences in pollen dispersal within the two remnant types. On average, pollen travels ~100 m irrespective of remnant type but was also detected to have dispersed as far as 1 km in open landscapes. Low biparental inbreeding, limited reproductive assurance for near-neighbour and probably related males and variability in the distances over which females sample pollen pools suggest that some mechanism to prevent matings between relatives exists in this species. |
format | Online Article Text |
id | pubmed-4350918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43509182015-03-17 Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae) Broadhurst, Linda PLoS One Research Article Vegetation clearing, land modification and agricultural intensification have impacted on many ecological communities around the world. Understanding how species respond to fragmentation and the scales over which functionality is retained, can be critical for managing biodiversity in agricultural landscapes. Allocasuarina verticillata (drooping sheoak, drooping she-oak) is a dioecious, wind-pollinated and -dispersed species with key conservation values across southeastern Australia. But vegetation clearing associated with agricultural expansion has reduced the abundance and spatial distribution of this species in many regions. Spatial genetic structure, relatedness among trees, pollen dispersal and mating patterns were examined in fragmented A. verticillata populations selected to represent the types of remnants that now characterise this species. Short scale spatial genetic structure (5–25 m) and relatedness among trees were observed in most populations. Unexpectedly, the two male trees closest to each female did not have a reproductive advantage accounting for only 4–15% of the seed produced in larger populations. Biparental inbreeding was also generally low (<4%) with limited evidence of seed crop domination by some male trees. More male trees contributed to seed crops in linear remnants (mean 17) compared to those from patch remnants (mean 11.3) which may reflect differences in pollen dispersal within the two remnant types. On average, pollen travels ~100 m irrespective of remnant type but was also detected to have dispersed as far as 1 km in open landscapes. Low biparental inbreeding, limited reproductive assurance for near-neighbour and probably related males and variability in the distances over which females sample pollen pools suggest that some mechanism to prevent matings between relatives exists in this species. Public Library of Science 2015-03-05 /pmc/articles/PMC4350918/ /pubmed/25742183 http://dx.doi.org/10.1371/journal.pone.0119498 Text en © 2015 Linda Broadhurst http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Broadhurst, Linda Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae) |
title | Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae) |
title_full | Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae) |
title_fullStr | Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae) |
title_full_unstemmed | Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae) |
title_short | Pollen Dispersal in Fragmented Populations of the Dioecious Wind-Pollinated Tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae) |
title_sort | pollen dispersal in fragmented populations of the dioecious wind-pollinated tree, allocasuarina verticillata (drooping sheoak, drooping she-oak; allocasuarinaceae) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350918/ https://www.ncbi.nlm.nih.gov/pubmed/25742183 http://dx.doi.org/10.1371/journal.pone.0119498 |
work_keys_str_mv | AT broadhurstlinda pollendispersalinfragmentedpopulationsofthedioeciouswindpollinatedtreeallocasuarinaverticillatadroopingsheoakdroopingsheoakallocasuarinaceae |