Cargando…
Systematic Artifacts in Support Vector Regression-Based Compound Potency Prediction Revealed by Statistical and Activity Landscape Analysis
Support vector machines are a popular machine learning method for many classification tasks in biology and chemistry. In addition, the support vector regression (SVR) variant is widely used for numerical property predictions. In chemoinformatics and pharmaceutical research, SVR has become the probab...
Autores principales: | Balfer, Jenny, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350943/ https://www.ncbi.nlm.nih.gov/pubmed/25742011 http://dx.doi.org/10.1371/journal.pone.0119301 |
Ejemplares similares
-
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017) -
Potency-directed similarity searching using support vector machines
por: Heikamp, Kathrin, et al.
Publicado: (2012) -
Activity artifacts in drug discovery and different facets of compound promiscuity
por: Bajorath, Jürgen
Publicado: (2014) -
Rationalizing general limitations in assessing and comparing methods for compound potency prediction
por: Janela, Tiago, et al.
Publicado: (2023) -
Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2022)