Cargando…

TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells

BACKGROUND: Unlike bone tissue, articular cartilage regeneration has not been very successful and has many challenges ahead. We have previously developed injectable hydrogels using photopolymerizable chitosan (MeGC) that supported growth of chondrocytes. In this study, we demonstrate a biofunctional...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jinku, Lin, Brian, Kim, Soyon, Choi, Bogyu, Evseenko, Denis, Lee, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350967/
https://www.ncbi.nlm.nih.gov/pubmed/25745515
http://dx.doi.org/10.1186/1754-1611-9-1
Descripción
Sumario:BACKGROUND: Unlike bone tissue, articular cartilage regeneration has not been very successful and has many challenges ahead. We have previously developed injectable hydrogels using photopolymerizable chitosan (MeGC) that supported growth of chondrocytes. In this study, we demonstrate a biofunctional hydrogel for specific use in cartilage regeneration by conjugating transforming growth factor-β1 (TGF-β1), a well-documented chondrogenic factor, to MeGC hydrogels impregnating type II collagen (Col II), one of the major cartilaginous extracellular matrix (ECM) components. RESULTS: TGF-β1 was delivered from MeGC hydrogels in a controlled manner with reduced burst release by chemically conjugating the protein to MeGC. The hydrogel system did not compromise viability of encapsulated human synovium-derived mesenchymal stem cells (hSMSCs). Col II impregnation and TGF-β1 delivery significantly enhanced cellular aggregation and deposition of cartilaginous ECM by the encapsulated cells, compared with pure MeGC hydrogels. CONCLUSIONS: This study demonstrates successful engineering of a biofunctional hydrogel with a specific microenvironment tailored to promote chondrogenesis. This hydrogel system can provide promising efficacious therapeutics in the treatment of cartilage defects. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1754-1611-9-1) contains supplementary material, which is available to authorized users.