Cargando…
Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data in...
Autores principales: | Li, Zhenlong, Yang, Chaowei, Jin, Baoxuan, Yu, Manzhu, Liu, Kai, Sun, Min, Zhan, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351198/ https://www.ncbi.nlm.nih.gov/pubmed/25742012 http://dx.doi.org/10.1371/journal.pone.0116781 |
Ejemplares similares
-
Cloud Computing Enabled Big Multi-Omics Data
Analytics
por: Koppad, Saraswati, et al.
Publicado: (2021) -
CloudBurst: highly sensitive read mapping with MapReduce
por: Schatz, Michael C.
Publicado: (2009) -
Learning big data with Amazon Elastic MapReduce
por: Singh, Amarkant, et al.
Publicado: (2014) -
MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning
por: Liu, Yang, et al.
Publicado: (2015) -
A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services
por: Gui, Zhipeng, et al.
Publicado: (2014)