Cargando…

Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity

Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of perso...

Descripción completa

Detalles Bibliográficos
Autores principales: Majumder, Biswanath, Baraneedharan, Ulaganathan, Thiyagarajan, Saravanan, Radhakrishnan, Padhma, Narasimhan, Harikrishna, Dhandapani, Muthu, Brijwani, Nilesh, Pinto, Dency D., Prasath, Arun, Shanthappa, Basavaraja U., Thayakumar, Allen, Surendran, Rajagopalan, Babu, Govind K., Shenoy, Ashok M., Kuriakose, Moni A., Bergthold, Guillaume, Horowitz, Peleg, Loda, Massimo, Beroukhim, Rameen, Agarwal, Shivani, Sengupta, Shiladitya, Sundaram, Mallikarjun, Majumder, Pradip K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351621/
https://www.ncbi.nlm.nih.gov/pubmed/25721094
http://dx.doi.org/10.1038/ncomms7169
_version_ 1782360350181556224
author Majumder, Biswanath
Baraneedharan, Ulaganathan
Thiyagarajan, Saravanan
Radhakrishnan, Padhma
Narasimhan, Harikrishna
Dhandapani, Muthu
Brijwani, Nilesh
Pinto, Dency D.
Prasath, Arun
Shanthappa, Basavaraja U.
Thayakumar, Allen
Surendran, Rajagopalan
Babu, Govind K.
Shenoy, Ashok M.
Kuriakose, Moni A.
Bergthold, Guillaume
Horowitz, Peleg
Loda, Massimo
Beroukhim, Rameen
Agarwal, Shivani
Sengupta, Shiladitya
Sundaram, Mallikarjun
Majumder, Pradip K.
author_facet Majumder, Biswanath
Baraneedharan, Ulaganathan
Thiyagarajan, Saravanan
Radhakrishnan, Padhma
Narasimhan, Harikrishna
Dhandapani, Muthu
Brijwani, Nilesh
Pinto, Dency D.
Prasath, Arun
Shanthappa, Basavaraja U.
Thayakumar, Allen
Surendran, Rajagopalan
Babu, Govind K.
Shenoy, Ashok M.
Kuriakose, Moni A.
Bergthold, Guillaume
Horowitz, Peleg
Loda, Massimo
Beroukhim, Rameen
Agarwal, Shivani
Sengupta, Shiladitya
Sundaram, Mallikarjun
Majumder, Pradip K.
author_sort Majumder, Biswanath
collection PubMed
description Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.
format Online
Article
Text
id pubmed-4351621
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-43516212015-03-19 Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity Majumder, Biswanath Baraneedharan, Ulaganathan Thiyagarajan, Saravanan Radhakrishnan, Padhma Narasimhan, Harikrishna Dhandapani, Muthu Brijwani, Nilesh Pinto, Dency D. Prasath, Arun Shanthappa, Basavaraja U. Thayakumar, Allen Surendran, Rajagopalan Babu, Govind K. Shenoy, Ashok M. Kuriakose, Moni A. Bergthold, Guillaume Horowitz, Peleg Loda, Massimo Beroukhim, Rameen Agarwal, Shivani Sengupta, Shiladitya Sundaram, Mallikarjun Majumder, Pradip K. Nat Commun Article Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine. Nature Pub. Group 2015-02-27 /pmc/articles/PMC4351621/ /pubmed/25721094 http://dx.doi.org/10.1038/ncomms7169 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Majumder, Biswanath
Baraneedharan, Ulaganathan
Thiyagarajan, Saravanan
Radhakrishnan, Padhma
Narasimhan, Harikrishna
Dhandapani, Muthu
Brijwani, Nilesh
Pinto, Dency D.
Prasath, Arun
Shanthappa, Basavaraja U.
Thayakumar, Allen
Surendran, Rajagopalan
Babu, Govind K.
Shenoy, Ashok M.
Kuriakose, Moni A.
Bergthold, Guillaume
Horowitz, Peleg
Loda, Massimo
Beroukhim, Rameen
Agarwal, Shivani
Sengupta, Shiladitya
Sundaram, Mallikarjun
Majumder, Pradip K.
Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
title Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
title_full Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
title_fullStr Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
title_full_unstemmed Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
title_short Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
title_sort predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351621/
https://www.ncbi.nlm.nih.gov/pubmed/25721094
http://dx.doi.org/10.1038/ncomms7169
work_keys_str_mv AT majumderbiswanath predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT baraneedharanulaganathan predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT thiyagarajansaravanan predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT radhakrishnanpadhma predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT narasimhanharikrishna predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT dhandapanimuthu predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT brijwaninilesh predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT pintodencyd predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT prasatharun predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT shanthappabasavarajau predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT thayakumarallen predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT surendranrajagopalan predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT babugovindk predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT shenoyashokm predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT kuriakosemonia predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT bergtholdguillaume predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT horowitzpeleg predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT lodamassimo predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT beroukhimrameen predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT agarwalshivani predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT senguptashiladitya predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT sundarammallikarjun predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity
AT majumderpradipk predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity