Cargando…
Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of perso...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351621/ https://www.ncbi.nlm.nih.gov/pubmed/25721094 http://dx.doi.org/10.1038/ncomms7169 |
_version_ | 1782360350181556224 |
---|---|
author | Majumder, Biswanath Baraneedharan, Ulaganathan Thiyagarajan, Saravanan Radhakrishnan, Padhma Narasimhan, Harikrishna Dhandapani, Muthu Brijwani, Nilesh Pinto, Dency D. Prasath, Arun Shanthappa, Basavaraja U. Thayakumar, Allen Surendran, Rajagopalan Babu, Govind K. Shenoy, Ashok M. Kuriakose, Moni A. Bergthold, Guillaume Horowitz, Peleg Loda, Massimo Beroukhim, Rameen Agarwal, Shivani Sengupta, Shiladitya Sundaram, Mallikarjun Majumder, Pradip K. |
author_facet | Majumder, Biswanath Baraneedharan, Ulaganathan Thiyagarajan, Saravanan Radhakrishnan, Padhma Narasimhan, Harikrishna Dhandapani, Muthu Brijwani, Nilesh Pinto, Dency D. Prasath, Arun Shanthappa, Basavaraja U. Thayakumar, Allen Surendran, Rajagopalan Babu, Govind K. Shenoy, Ashok M. Kuriakose, Moni A. Bergthold, Guillaume Horowitz, Peleg Loda, Massimo Beroukhim, Rameen Agarwal, Shivani Sengupta, Shiladitya Sundaram, Mallikarjun Majumder, Pradip K. |
author_sort | Majumder, Biswanath |
collection | PubMed |
description | Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine. |
format | Online Article Text |
id | pubmed-4351621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-43516212015-03-19 Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity Majumder, Biswanath Baraneedharan, Ulaganathan Thiyagarajan, Saravanan Radhakrishnan, Padhma Narasimhan, Harikrishna Dhandapani, Muthu Brijwani, Nilesh Pinto, Dency D. Prasath, Arun Shanthappa, Basavaraja U. Thayakumar, Allen Surendran, Rajagopalan Babu, Govind K. Shenoy, Ashok M. Kuriakose, Moni A. Bergthold, Guillaume Horowitz, Peleg Loda, Massimo Beroukhim, Rameen Agarwal, Shivani Sengupta, Shiladitya Sundaram, Mallikarjun Majumder, Pradip K. Nat Commun Article Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine. Nature Pub. Group 2015-02-27 /pmc/articles/PMC4351621/ /pubmed/25721094 http://dx.doi.org/10.1038/ncomms7169 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Majumder, Biswanath Baraneedharan, Ulaganathan Thiyagarajan, Saravanan Radhakrishnan, Padhma Narasimhan, Harikrishna Dhandapani, Muthu Brijwani, Nilesh Pinto, Dency D. Prasath, Arun Shanthappa, Basavaraja U. Thayakumar, Allen Surendran, Rajagopalan Babu, Govind K. Shenoy, Ashok M. Kuriakose, Moni A. Bergthold, Guillaume Horowitz, Peleg Loda, Massimo Beroukhim, Rameen Agarwal, Shivani Sengupta, Shiladitya Sundaram, Mallikarjun Majumder, Pradip K. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity |
title | Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity |
title_full | Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity |
title_fullStr | Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity |
title_full_unstemmed | Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity |
title_short | Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity |
title_sort | predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351621/ https://www.ncbi.nlm.nih.gov/pubmed/25721094 http://dx.doi.org/10.1038/ncomms7169 |
work_keys_str_mv | AT majumderbiswanath predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT baraneedharanulaganathan predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT thiyagarajansaravanan predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT radhakrishnanpadhma predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT narasimhanharikrishna predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT dhandapanimuthu predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT brijwaninilesh predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT pintodencyd predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT prasatharun predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT shanthappabasavarajau predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT thayakumarallen predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT surendranrajagopalan predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT babugovindk predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT shenoyashokm predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT kuriakosemonia predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT bergtholdguillaume predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT horowitzpeleg predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT lodamassimo predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT beroukhimrameen predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT agarwalshivani predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT senguptashiladitya predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT sundarammallikarjun predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity AT majumderpradipk predictingclinicalresponsetoanticancerdrugsusinganexvivoplatformthatcapturestumourheterogeneity |