Cargando…
Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution
Differences in transcriptional regulatory networks underlie much of the phenotypic variation observed across organisms. Changes to cis-regulatory elements are widely believed to be the predominant means by which regulatory networks evolve, yet examples of regulatory network divergence due to transcr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351887/ https://www.ncbi.nlm.nih.gov/pubmed/25748510 http://dx.doi.org/10.1371/journal.pgen.1005011 |
_version_ | 1782360372498399232 |
---|---|
author | Nadimpalli, Shilpa Persikov, Anton V. Singh, Mona |
author_facet | Nadimpalli, Shilpa Persikov, Anton V. Singh, Mona |
author_sort | Nadimpalli, Shilpa |
collection | PubMed |
description | Differences in transcriptional regulatory networks underlie much of the phenotypic variation observed across organisms. Changes to cis-regulatory elements are widely believed to be the predominant means by which regulatory networks evolve, yet examples of regulatory network divergence due to transcription factor (TF) variation have also been observed. To systematically ascertain the extent to which TFs contribute to regulatory divergence, we analyzed the evolution of the largest class of metazoan TFs, Cys2-His2 zinc finger (C2H2-ZF) TFs, across 12 Drosophila species spanning ~45 million years of evolution. Remarkably, we uncovered that a significant fraction of all C2H2-ZF 1-to-1 orthologs in flies exhibit variations that can affect their DNA-binding specificities. In addition to loss and recruitment of C2H2-ZF domains, we found diverging DNA-contacting residues in ~44% of domains shared between D. melanogaster and the other fly species. These diverging DNA-contacting residues, found in ~70% of the D. melanogaster C2H2-ZF genes in our analysis and corresponding to ~26% of all annotated D. melanogaster TFs, show evidence of functional constraint: they tend to be conserved across phylogenetic clades and evolve slower than other diverging residues. These same variations were rarely found as polymorphisms within a population of D. melanogaster flies, indicating their rapid fixation. The predicted specificities of these dynamic domains gradually change across phylogenetic distances, suggesting stepwise evolutionary trajectories for TF divergence. Further, whereas proteins with conserved C2H2-ZF domains are enriched in developmental functions, those with varying domains exhibit no functional enrichments. Our work suggests that a subset of highly dynamic and largely unstudied TFs are a likely source of regulatory variation in Drosophila and other metazoans. |
format | Online Article Text |
id | pubmed-4351887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43518872015-03-17 Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution Nadimpalli, Shilpa Persikov, Anton V. Singh, Mona PLoS Genet Research Article Differences in transcriptional regulatory networks underlie much of the phenotypic variation observed across organisms. Changes to cis-regulatory elements are widely believed to be the predominant means by which regulatory networks evolve, yet examples of regulatory network divergence due to transcription factor (TF) variation have also been observed. To systematically ascertain the extent to which TFs contribute to regulatory divergence, we analyzed the evolution of the largest class of metazoan TFs, Cys2-His2 zinc finger (C2H2-ZF) TFs, across 12 Drosophila species spanning ~45 million years of evolution. Remarkably, we uncovered that a significant fraction of all C2H2-ZF 1-to-1 orthologs in flies exhibit variations that can affect their DNA-binding specificities. In addition to loss and recruitment of C2H2-ZF domains, we found diverging DNA-contacting residues in ~44% of domains shared between D. melanogaster and the other fly species. These diverging DNA-contacting residues, found in ~70% of the D. melanogaster C2H2-ZF genes in our analysis and corresponding to ~26% of all annotated D. melanogaster TFs, show evidence of functional constraint: they tend to be conserved across phylogenetic clades and evolve slower than other diverging residues. These same variations were rarely found as polymorphisms within a population of D. melanogaster flies, indicating their rapid fixation. The predicted specificities of these dynamic domains gradually change across phylogenetic distances, suggesting stepwise evolutionary trajectories for TF divergence. Further, whereas proteins with conserved C2H2-ZF domains are enriched in developmental functions, those with varying domains exhibit no functional enrichments. Our work suggests that a subset of highly dynamic and largely unstudied TFs are a likely source of regulatory variation in Drosophila and other metazoans. Public Library of Science 2015-03-06 /pmc/articles/PMC4351887/ /pubmed/25748510 http://dx.doi.org/10.1371/journal.pgen.1005011 Text en © 2015 Nadimpalli et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Nadimpalli, Shilpa Persikov, Anton V. Singh, Mona Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution |
title | Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution |
title_full | Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution |
title_fullStr | Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution |
title_full_unstemmed | Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution |
title_short | Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution |
title_sort | pervasive variation of transcription factor orthologs contributes to regulatory network evolution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351887/ https://www.ncbi.nlm.nih.gov/pubmed/25748510 http://dx.doi.org/10.1371/journal.pgen.1005011 |
work_keys_str_mv | AT nadimpallishilpa pervasivevariationoftranscriptionfactororthologscontributestoregulatorynetworkevolution AT persikovantonv pervasivevariationoftranscriptionfactororthologscontributestoregulatorynetworkevolution AT singhmona pervasivevariationoftranscriptionfactororthologscontributestoregulatorynetworkevolution |