Cargando…

Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis

Breast cancer metastasis involves lymphatic dissemination in addition to hematogenous spreading. Although stromal lymphatic vessels (LVs) serve as initial metastatic routes, roles of organ-residing LVs are under-investigated. Here we show that lymphatic endothelial cells (LECs), a component of LVs w...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Esak, Fertig, Elana J., Jin, Kideok, Sukumar, Saraswati, Pandey, Niranjan B., Popel, Aleksander S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351998/
https://www.ncbi.nlm.nih.gov/pubmed/25178650
http://dx.doi.org/10.1038/ncomms5715
Descripción
Sumario:Breast cancer metastasis involves lymphatic dissemination in addition to hematogenous spreading. Although stromal lymphatic vessels (LVs) serve as initial metastatic routes, roles of organ-residing LVs are under-investigated. Here we show that lymphatic endothelial cells (LECs), a component of LVs within pre-metastatic niches, are conditioned by triple-negative breast cancer (TNBC) cells to accelerate metastasis. LECs within the lungs and lymph nodes, conditioned by tumor-secreted factors express CCL5 that is not expressed either in normal LECs or cancer cells, and direct tumor dissemination into these tissues. Moreover, tumor-conditioned LECs promote angiogenesis in these organs, allowing tumor extravasation and colonization. Mechanistically, tumor cell-secreted IL6 causes Stat3 phosphorylation in LECs. This pStat3 induces HIF-1α and VEGF, and a pStat3-pc-Jun-pATF-2 ternary complex induces CCL5 expression in LECs. This study demonstrates anti-metastatic activities of multiple repurposed drugs, blocking a self-reinforcing paracrine loop between breast cancer cells and LECs.