Cargando…
Change Rates and Prevalence of a Dichotomous Variable: Simulations and Applications
A common modelling approach in public health and epidemiology divides the population under study into compartments containing persons that share the same status. Here we consider a three-state model with the compartments: A, B and Dead. States A and B may be the states of any dichotomous variable, f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352043/ https://www.ncbi.nlm.nih.gov/pubmed/25749133 http://dx.doi.org/10.1371/journal.pone.0118955 |
Sumario: | A common modelling approach in public health and epidemiology divides the population under study into compartments containing persons that share the same status. Here we consider a three-state model with the compartments: A, B and Dead. States A and B may be the states of any dichotomous variable, for example, Healthy and Ill, respectively. The transitions between the states are described by change rates, which depend on calendar time and on age. So far, a rigorous mathematical calculation of the prevalence of property B has been difficult, which has limited the use of the model in epidemiology and public health. We develop a partial differential equation (PDE) that simplifies the use of the three-state model. To demonstrate the validity of the PDE, it is applied to two simulation studies, one about a hypothetical chronic disease and one about dementia in Germany. In two further applications, the PDE may provide insights into smoking behaviour of males in Germany and the knowledge about the ovulatory cycle in Egyptian women. |
---|