Cargando…
Detection of influenza-like illness aberrations by directly monitoring Pearson residuals of fitted negative binomial regression models
BACKGROUND: Emerging novel influenza outbreaks have increasingly been a threat to the public and a major concern of public health departments. Real-time data in seamless surveillance systems such as health insurance claims data for influenza-like illnesses (ILI) are ready for analysis, making it hig...
Autores principales: | Chan, Ta-Chien, Teng, Yung-Chu, Hwang, Jing-Shiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352259/ https://www.ncbi.nlm.nih.gov/pubmed/25886316 http://dx.doi.org/10.1186/s12889-015-1500-4 |
Ejemplares similares
-
Two-stage Approach for Detecting Aberration of Influenza-like Illness
por: Chan, Ta-Chien, et al.
Publicado: (2014) -
Improved estimation in negative binomial regression
por: Kenne Pagui, Euloge Clovis, et al.
Publicado: (2022) -
Goodness-of-Fit Tests and Model Diagnostics for Negative Binomial Regression of RNA Sequencing Data
por: Mi, Gu, et al.
Publicado: (2015) -
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
Negative binomial factor regression with application to microbiome data analysis
por: Mishra, Aditya K., et al.
Publicado: (2022)