Cargando…
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multip...
Autores principales: | Chao, Chih-Feng, Horng, Ming-Huwi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352751/ https://www.ncbi.nlm.nih.gov/pubmed/25802511 http://dx.doi.org/10.1155/2015/212719 |
Ejemplares similares
-
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
por: Chao, Chih-Feng, et al.
Publicado: (2015) -
QSRR modeling of the chromatographic retention behavior of some quinolone and sulfonamide antibacterial agents using firefly algorithm coupled to support vector machine
por: Fouad, Marwa A., et al.
Publicado: (2022) -
Detection and Classification of Myocardial Infarction with Support Vector Machine Classifier Using Grasshopper Optimization Algorithm
por: Safdarian, Naser, et al.
Publicado: (2021) -
Classifying LEP Data with Support Vector Algorithms
por: Vannerem, P., et al.
Publicado: (1999) -
Construction of a Support Vector Machine–Based Classifier for Pulmonary Arterial Hypertension Patients
por: Shang, Zhenglu, et al.
Publicado: (2021)