Cargando…

Pick's Theorem in Two-Dimensional Subspace of ℝ(3)

In the Euclidean space ℝ(3), denote the set of all points with integer coordinate by ℤ(3). For any two-dimensional simple lattice polygon P, we establish the following analogy version of Pick's Theorem, k(I(P) + (1/2)B(P) − 1), where B(P) is the number of lattice points on the boundary of P in...

Descripción completa

Detalles Bibliográficos
Autor principal: Si, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352900/
https://www.ncbi.nlm.nih.gov/pubmed/25802889
http://dx.doi.org/10.1155/2015/535469
Descripción
Sumario:In the Euclidean space ℝ(3), denote the set of all points with integer coordinate by ℤ(3). For any two-dimensional simple lattice polygon P, we establish the following analogy version of Pick's Theorem, k(I(P) + (1/2)B(P) − 1), where B(P) is the number of lattice points on the boundary of P in ℤ(3), I(P) is the number of lattice points in the interior of P in ℤ(3), and k is a constant only related to the two-dimensional subspace including P.