Cargando…
Pick's Theorem in Two-Dimensional Subspace of ℝ(3)
In the Euclidean space ℝ(3), denote the set of all points with integer coordinate by ℤ(3). For any two-dimensional simple lattice polygon P, we establish the following analogy version of Pick's Theorem, k(I(P) + (1/2)B(P) − 1), where B(P) is the number of lattice points on the boundary of P in...
Autor principal: | Si, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352900/ https://www.ncbi.nlm.nih.gov/pubmed/25802889 http://dx.doi.org/10.1155/2015/535469 |
Ejemplares similares
-
Ensemble Linear Subspace Analysis of High-Dimensional Data
por: Ahmed, S. Ejaz, et al.
Publicado: (2021) -
Multilinear subspace learning
:
dimensionality reduction of multidimensional data
por: Lu, Haiping, et al.
Publicado: (2014) -
Subspace-by-subspace preconditioners for structured linear systems
por: Daydé, M J, et al.
Publicado: (1998) -
No-go theorems for R symmetries in four-dimensional GUTs
por: Fallbacher, Maximilian, et al.
Publicado: (2011) -
No-Dimensional Tverberg Theorems and Algorithms
por: Choudhary, Aruni, et al.
Publicado: (2022)