Cargando…

Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study

Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic sam...

Descripción completa

Detalles Bibliográficos
Autores principales: Tietze, Thomas, Audehm, Patrick, Chen, Yu–Chun, Schütz, Gisela, Straumal, Boris B., Protasova, Svetlana G., Mazilkin, Andrey A., Straumal, Petr B., Prokscha, Thomas, Luetkens, Hubertus, Salman, Zaher, Suter, Andreas, Baretzky, Brigitte, Fink, Karin, Wenzel, Wolfgang, Danilov, Denis, Goering, Eberhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352909/
https://www.ncbi.nlm.nih.gov/pubmed/25747456
http://dx.doi.org/10.1038/srep08871
_version_ 1782360525504512000
author Tietze, Thomas
Audehm, Patrick
Chen, Yu–Chun
Schütz, Gisela
Straumal, Boris B.
Protasova, Svetlana G.
Mazilkin, Andrey A.
Straumal, Petr B.
Prokscha, Thomas
Luetkens, Hubertus
Salman, Zaher
Suter, Andreas
Baretzky, Brigitte
Fink, Karin
Wenzel, Wolfgang
Danilov, Denis
Goering, Eberhard
author_facet Tietze, Thomas
Audehm, Patrick
Chen, Yu–Chun
Schütz, Gisela
Straumal, Boris B.
Protasova, Svetlana G.
Mazilkin, Andrey A.
Straumal, Petr B.
Prokscha, Thomas
Luetkens, Hubertus
Salman, Zaher
Suter, Andreas
Baretzky, Brigitte
Fink, Karin
Wenzel, Wolfgang
Danilov, Denis
Goering, Eberhard
author_sort Tietze, Thomas
collection PubMed
description Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non–magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides.
format Online
Article
Text
id pubmed-4352909
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-43529092015-03-17 Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study Tietze, Thomas Audehm, Patrick Chen, Yu–Chun Schütz, Gisela Straumal, Boris B. Protasova, Svetlana G. Mazilkin, Andrey A. Straumal, Petr B. Prokscha, Thomas Luetkens, Hubertus Salman, Zaher Suter, Andreas Baretzky, Brigitte Fink, Karin Wenzel, Wolfgang Danilov, Denis Goering, Eberhard Sci Rep Article Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non–magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides. Nature Publishing Group 2015-03-09 /pmc/articles/PMC4352909/ /pubmed/25747456 http://dx.doi.org/10.1038/srep08871 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Tietze, Thomas
Audehm, Patrick
Chen, Yu–Chun
Schütz, Gisela
Straumal, Boris B.
Protasova, Svetlana G.
Mazilkin, Andrey A.
Straumal, Petr B.
Prokscha, Thomas
Luetkens, Hubertus
Salman, Zaher
Suter, Andreas
Baretzky, Brigitte
Fink, Karin
Wenzel, Wolfgang
Danilov, Denis
Goering, Eberhard
Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
title Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
title_full Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
title_fullStr Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
title_full_unstemmed Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
title_short Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
title_sort interfacial dominated ferromagnetism in nanograined zno: a μsr and dft study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352909/
https://www.ncbi.nlm.nih.gov/pubmed/25747456
http://dx.doi.org/10.1038/srep08871
work_keys_str_mv AT tietzethomas interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT audehmpatrick interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT chenyuchun interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT schutzgisela interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT straumalborisb interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT protasovasvetlanag interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT mazilkinandreya interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT straumalpetrb interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT prokschathomas interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT luetkenshubertus interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT salmanzaher interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT suterandreas interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT baretzkybrigitte interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT finkkarin interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT wenzelwolfgang interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT danilovdenis interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy
AT goeringeberhard interfacialdominatedferromagnetisminnanograinedznoamsranddftstudy