Cargando…
Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features
This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles and their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352926/ https://www.ncbi.nlm.nih.gov/pubmed/25802891 http://dx.doi.org/10.1155/2015/786013 |
_version_ | 1782360529451352064 |
---|---|
author | Adetiba, Emmanuel Olugbara, Oludayo O. |
author_facet | Adetiba, Emmanuel Olugbara, Oludayo O. |
author_sort | Adetiba, Emmanuel |
collection | PubMed |
description | This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles and their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene, and tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training the selected classifiers. The histogram of oriented gradient (HOG) and local binary pattern (LBP) state-of-the-art feature extraction schemes were applied to extract representative genomic features from the encoded sequences of nucleotides. The ANN ensemble and HOG best fit the training dataset of this study with an accuracy of 95.90% and mean square error of 0.0159. The result of the ANN ensemble and HOG genomic features is promising for automated screening and early detection of lung cancer. This will hopefully assist pathologists in administering targeted molecular therapy and offering counsel to early stage lung cancer patients and persons in at risk populations. |
format | Online Article Text |
id | pubmed-4352926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43529262015-03-23 Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features Adetiba, Emmanuel Olugbara, Oludayo O. ScientificWorldJournal Research Article This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles and their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene, and tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training the selected classifiers. The histogram of oriented gradient (HOG) and local binary pattern (LBP) state-of-the-art feature extraction schemes were applied to extract representative genomic features from the encoded sequences of nucleotides. The ANN ensemble and HOG best fit the training dataset of this study with an accuracy of 95.90% and mean square error of 0.0159. The result of the ANN ensemble and HOG genomic features is promising for automated screening and early detection of lung cancer. This will hopefully assist pathologists in administering targeted molecular therapy and offering counsel to early stage lung cancer patients and persons in at risk populations. Hindawi Publishing Corporation 2015 2015-02-23 /pmc/articles/PMC4352926/ /pubmed/25802891 http://dx.doi.org/10.1155/2015/786013 Text en Copyright © 2015 E. Adetiba and O. O. Olugbara. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Adetiba, Emmanuel Olugbara, Oludayo O. Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features |
title | Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features |
title_full | Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features |
title_fullStr | Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features |
title_full_unstemmed | Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features |
title_short | Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features |
title_sort | lung cancer prediction using neural network ensemble with histogram of oriented gradient genomic features |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352926/ https://www.ncbi.nlm.nih.gov/pubmed/25802891 http://dx.doi.org/10.1155/2015/786013 |
work_keys_str_mv | AT adetibaemmanuel lungcancerpredictionusingneuralnetworkensemblewithhistogramoforientedgradientgenomicfeatures AT olugbaraoludayoo lungcancerpredictionusingneuralnetworkensemblewithhistogramoforientedgradientgenomicfeatures |