Cargando…
Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload
The passive brain-computer interface (pBCI) framework has been shown to be a very promising construct for assessing cognitive and affective state in both individuals and teams. There is a growing body of work that focuses on solving the challenges of transitioning pBCI systems from the research labo...
Autores principales: | Estepp, Justin R., Christensen, James C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353251/ https://www.ncbi.nlm.nih.gov/pubmed/25805963 http://dx.doi.org/10.3389/fnins.2015.00054 |
Ejemplares similares
-
Simultaneous Classification of Both Mental Workload and Stress Level Suitable for an Online Passive Brain–Computer Interface
por: Bagheri, Mahsa, et al.
Publicado: (2022) -
Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks
por: Hefron, Ryan, et al.
Publicado: (2018) -
How does physical guidance affect motor learning and learner’s
workload?
por: Yamaguchi, Kazuto, et al.
Publicado: (2020) -
Cognitive Analyses for Interface Design Using Dual N-Back Tasks for Mental Workload (MWL) Evaluation
por: Arana-De las Casas, Nancy Ivette, et al.
Publicado: (2023) -
Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface
por: Asgher, Umer, et al.
Publicado: (2020)