Cargando…

Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Martín-Betancor, Keila, Rodea-Palomares, Ismael, Muñoz-Martín, M. A., Leganés, Francisco, Fernández-Piñas, Francisca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353254/
https://www.ncbi.nlm.nih.gov/pubmed/25806029
http://dx.doi.org/10.3389/fmicb.2015.00186
Descripción
Sumario:A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg(2+) (the ion to which the bioreporter was most sensitive) to 1.54–5.35 μM for Cd(2+) with an order of decreasing sensitivity as follows: Hg(2+) >> Cu(2+) >> Ag(+) > Co(2+) ≥ Zn(2+) > Cd(2+). However, the maximum induction factor reached 75-fold in the case of Zn(2+) and 56-fold in the case of Cd(2+), implying that Zn(2+) is the preferred metal in vivo for the SmtB sensor, followed by Cd(2+), Ag(+) and Cu(2+) (around 45–50-fold induction), Hg(2+) (30-fold) and finally Co(2+) (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments.