Cargando…

Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion

The influenza virus is surrounded by an envelope composed of a lipid bilayer and integral membrane proteins. Understanding the structural dynamics of the membrane envelope provides biophysical insights into aspects of viral function, such as the wide-ranging survival times of the virion in different...

Descripción completa

Detalles Bibliográficos
Autores principales: Reddy, Tyler, Shorthouse, David, Parton, Daniel L., Jefferys, Elizabeth, Fowler, Philip W., Chavent, Matthieu, Baaden, Marc, Sansom, Mark S.P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353694/
https://www.ncbi.nlm.nih.gov/pubmed/25703376
http://dx.doi.org/10.1016/j.str.2014.12.019
_version_ 1782360628447412224
author Reddy, Tyler
Shorthouse, David
Parton, Daniel L.
Jefferys, Elizabeth
Fowler, Philip W.
Chavent, Matthieu
Baaden, Marc
Sansom, Mark S.P.
author_facet Reddy, Tyler
Shorthouse, David
Parton, Daniel L.
Jefferys, Elizabeth
Fowler, Philip W.
Chavent, Matthieu
Baaden, Marc
Sansom, Mark S.P.
author_sort Reddy, Tyler
collection PubMed
description The influenza virus is surrounded by an envelope composed of a lipid bilayer and integral membrane proteins. Understanding the structural dynamics of the membrane envelope provides biophysical insights into aspects of viral function, such as the wide-ranging survival times of the virion in different environments. We have combined experimental data from X-ray crystallography, nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and lipidomics to build a model of the intact influenza A virion. This is the basis of microsecond-scale coarse-grained molecular dynamics simulations of the virion, providing simulations at different temperatures and with varying lipid compositions. The presence of the Forssman glycolipid alters a number of biophysical properties of the virion, resulting in reduced mobility of bilayer lipid and protein species. Reduced mobility in the virion membrane may confer physical robustness to changes in environmental conditions. Our simulations indicate that viral spike proteins do not aggregate and thus are competent for multivalent immunoglobulin G interactions.
format Online
Article
Text
id pubmed-4353694
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-43536942015-03-31 Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion Reddy, Tyler Shorthouse, David Parton, Daniel L. Jefferys, Elizabeth Fowler, Philip W. Chavent, Matthieu Baaden, Marc Sansom, Mark S.P. Structure Theory The influenza virus is surrounded by an envelope composed of a lipid bilayer and integral membrane proteins. Understanding the structural dynamics of the membrane envelope provides biophysical insights into aspects of viral function, such as the wide-ranging survival times of the virion in different environments. We have combined experimental data from X-ray crystallography, nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and lipidomics to build a model of the intact influenza A virion. This is the basis of microsecond-scale coarse-grained molecular dynamics simulations of the virion, providing simulations at different temperatures and with varying lipid compositions. The presence of the Forssman glycolipid alters a number of biophysical properties of the virion, resulting in reduced mobility of bilayer lipid and protein species. Reduced mobility in the virion membrane may confer physical robustness to changes in environmental conditions. Our simulations indicate that viral spike proteins do not aggregate and thus are competent for multivalent immunoglobulin G interactions. Cell Press 2015-03-03 /pmc/articles/PMC4353694/ /pubmed/25703376 http://dx.doi.org/10.1016/j.str.2014.12.019 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Theory
Reddy, Tyler
Shorthouse, David
Parton, Daniel L.
Jefferys, Elizabeth
Fowler, Philip W.
Chavent, Matthieu
Baaden, Marc
Sansom, Mark S.P.
Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion
title Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion
title_full Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion
title_fullStr Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion
title_full_unstemmed Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion
title_short Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion
title_sort nothing to sneeze at: a dynamic and integrative computational model of an influenza a virion
topic Theory
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353694/
https://www.ncbi.nlm.nih.gov/pubmed/25703376
http://dx.doi.org/10.1016/j.str.2014.12.019
work_keys_str_mv AT reddytyler nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion
AT shorthousedavid nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion
AT partondaniell nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion
AT jefferyselizabeth nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion
AT fowlerphilipw nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion
AT chaventmatthieu nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion
AT baadenmarc nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion
AT sansommarksp nothingtosneezeatadynamicandintegrativecomputationalmodelofaninfluenzaavirion