Cargando…

Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection

Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and suscepti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakala, Isaac G., Chaudhri, Geeta, Eldi, Preethi, Buller, R. Mark, Karupiah, Gunasegaran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353717/
https://www.ncbi.nlm.nih.gov/pubmed/25751266
http://dx.doi.org/10.1371/journal.pone.0118685
_version_ 1782360633217384448
author Sakala, Isaac G.
Chaudhri, Geeta
Eldi, Preethi
Buller, R. Mark
Karupiah, Gunasegaran
author_facet Sakala, Isaac G.
Chaudhri, Geeta
Eldi, Preethi
Buller, R. Mark
Karupiah, Gunasegaran
author_sort Sakala, Isaac G.
collection PubMed
description Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbp(Δ)) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbp(Δ) but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses.
format Online
Article
Text
id pubmed-4353717
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43537172015-03-17 Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection Sakala, Isaac G. Chaudhri, Geeta Eldi, Preethi Buller, R. Mark Karupiah, Gunasegaran PLoS One Research Article Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbp(Δ)) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbp(Δ) but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses. Public Library of Science 2015-03-09 /pmc/articles/PMC4353717/ /pubmed/25751266 http://dx.doi.org/10.1371/journal.pone.0118685 Text en © 2015 Sakala et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Sakala, Isaac G.
Chaudhri, Geeta
Eldi, Preethi
Buller, R. Mark
Karupiah, Gunasegaran
Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection
title Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection
title_full Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection
title_fullStr Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection
title_full_unstemmed Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection
title_short Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection
title_sort deficiency in th2 cytokine responses exacerbate orthopoxvirus infection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353717/
https://www.ncbi.nlm.nih.gov/pubmed/25751266
http://dx.doi.org/10.1371/journal.pone.0118685
work_keys_str_mv AT sakalaisaacg deficiencyinth2cytokineresponsesexacerbateorthopoxvirusinfection
AT chaudhrigeeta deficiencyinth2cytokineresponsesexacerbateorthopoxvirusinfection
AT eldipreethi deficiencyinth2cytokineresponsesexacerbateorthopoxvirusinfection
AT bullerrmark deficiencyinth2cytokineresponsesexacerbateorthopoxvirusinfection
AT karupiahgunasegaran deficiencyinth2cytokineresponsesexacerbateorthopoxvirusinfection