Cargando…

The evolution of cyclopropenium ions into functional polyelectrolytes

Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yivan, Freyer, Jessica L., Cotanda, Pepa, Brucks, Spencer D., Killops, Kato L., Bandar, Jeffrey S., Torsitano, Christopher, Balsara, Nitash P., Lambert, Tristan H., Campos, Luis M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354017/
https://www.ncbi.nlm.nih.gov/pubmed/25575214
http://dx.doi.org/10.1038/ncomms6950
_version_ 1782360689188274176
author Jiang, Yivan
Freyer, Jessica L.
Cotanda, Pepa
Brucks, Spencer D.
Killops, Kato L.
Bandar, Jeffrey S.
Torsitano, Christopher
Balsara, Nitash P.
Lambert, Tristan H.
Campos, Luis M.
author_facet Jiang, Yivan
Freyer, Jessica L.
Cotanda, Pepa
Brucks, Spencer D.
Killops, Kato L.
Bandar, Jeffrey S.
Torsitano, Christopher
Balsara, Nitash P.
Lambert, Tristan H.
Campos, Luis M.
author_sort Jiang, Yivan
collection PubMed
description Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.
format Online
Article
Text
id pubmed-4354017
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-43540172015-03-20 The evolution of cyclopropenium ions into functional polyelectrolytes Jiang, Yivan Freyer, Jessica L. Cotanda, Pepa Brucks, Spencer D. Killops, Kato L. Bandar, Jeffrey S. Torsitano, Christopher Balsara, Nitash P. Lambert, Tristan H. Campos, Luis M. Nat Commun Article Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes. Nature Pub. Group 2015-01-09 /pmc/articles/PMC4354017/ /pubmed/25575214 http://dx.doi.org/10.1038/ncomms6950 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Jiang, Yivan
Freyer, Jessica L.
Cotanda, Pepa
Brucks, Spencer D.
Killops, Kato L.
Bandar, Jeffrey S.
Torsitano, Christopher
Balsara, Nitash P.
Lambert, Tristan H.
Campos, Luis M.
The evolution of cyclopropenium ions into functional polyelectrolytes
title The evolution of cyclopropenium ions into functional polyelectrolytes
title_full The evolution of cyclopropenium ions into functional polyelectrolytes
title_fullStr The evolution of cyclopropenium ions into functional polyelectrolytes
title_full_unstemmed The evolution of cyclopropenium ions into functional polyelectrolytes
title_short The evolution of cyclopropenium ions into functional polyelectrolytes
title_sort evolution of cyclopropenium ions into functional polyelectrolytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354017/
https://www.ncbi.nlm.nih.gov/pubmed/25575214
http://dx.doi.org/10.1038/ncomms6950
work_keys_str_mv AT jiangyivan theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT freyerjessical theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT cotandapepa theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT brucksspencerd theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT killopskatol theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT bandarjeffreys theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT torsitanochristopher theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT balsaranitashp theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT lamberttristanh theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT camposluism theevolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT jiangyivan evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT freyerjessical evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT cotandapepa evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT brucksspencerd evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT killopskatol evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT bandarjeffreys evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT torsitanochristopher evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT balsaranitashp evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT lamberttristanh evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes
AT camposluism evolutionofcyclopropeniumionsintofunctionalpolyelectrolytes