Cargando…
Coexistence of metallic and insulating-like states in graphene
Since graphene has been taken as the potential host material for next-generation electric devices, coexistence of high carrier mobility and an energy gap has the determining role in its real applications. However, in conventional methods of band-gap engineering, the energy gap and carrier mobility i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354033/ https://www.ncbi.nlm.nih.gov/pubmed/25754862 http://dx.doi.org/10.1038/srep08974 |
Sumario: | Since graphene has been taken as the potential host material for next-generation electric devices, coexistence of high carrier mobility and an energy gap has the determining role in its real applications. However, in conventional methods of band-gap engineering, the energy gap and carrier mobility in graphene are seemed to be the two terminals of a seesaw, which limit its rapid development in electronic devices. Here we demonstrated the realization of insulating-like state in graphene without breaking Dirac cone. Using first-principles calculations, we found that ferroelectric substrate not only well reserves the Dirac fermions, but also induces pseudo-gap states in graphene. Calculated transport results clearly revealed that electrons cannot move along the ferroelectric direction. Thus, our work established a new concept of opening an energy gap in graphene without reducing the high mobility of carriers, which is a step towards manufacturing graphene-based devices. |
---|