Cargando…
Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso
Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs). Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wr...
Autores principales: | Wang, Jin-Jia, Xue, Fang, Li, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354735/ https://www.ncbi.nlm.nih.gov/pubmed/25802861 http://dx.doi.org/10.1155/2015/703768 |
Ejemplares similares
-
Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression
por: Liu, Xiaoli, et al.
Publicado: (2020) -
Sparse EEG/MEG source estimation via a group lasso
por: Lim, Michael, et al.
Publicado: (2017) -
Groupyr: Sparse Group Lasso in Python
por: Richie-Halford, Adam, et al.
Publicado: (2021) -
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022) -
Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020)