Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept
Background: Three-dimensional design simulations of coronary metallic stents utilizing mathematical and computational algorithms have emerged as important tools for understanding biomechanical stent properties, predicting the interaction of the implanted platform with the adjacent tissue, and inform...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bloomsbury Qatar Foundation Journals
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355516/ https://www.ncbi.nlm.nih.gov/pubmed/25780796 http://dx.doi.org/10.5339/gcsp.2014.56 |
_version_ | 1782360871446511616 |
---|---|
author | Gogas, Bill D. Yang, Boyi Passerini, Tiziano Veneziani, Alessandro Piccinelli, Marina Esposito, Gaetano Rasoul-Arzrumly, Emad Awad, Mosaab Mekonnen, Girum Hung, Olivia Y. Holloway, Beth McDaniel, Michael Giddens, Don King, Spencer B. Samady, Habib |
author_facet | Gogas, Bill D. Yang, Boyi Passerini, Tiziano Veneziani, Alessandro Piccinelli, Marina Esposito, Gaetano Rasoul-Arzrumly, Emad Awad, Mosaab Mekonnen, Girum Hung, Olivia Y. Holloway, Beth McDaniel, Michael Giddens, Don King, Spencer B. Samady, Habib |
author_sort | Gogas, Bill D. |
collection | PubMed |
description | Background: Three-dimensional design simulations of coronary metallic stents utilizing mathematical and computational algorithms have emerged as important tools for understanding biomechanical stent properties, predicting the interaction of the implanted platform with the adjacent tissue, and informing stent design enhancements. Herein, we demonstrate the hemodynamic implications following virtual implantation of bioresorbable scaffolds using finite element methods and advanced computational fluid dynamics (CFD) simulations to visualize the device-flow interaction immediately after implantation and following scaffold resorption over time. Methods and Results: CFD simulations with time averaged wall shear stress (WSS) quantification following virtual bioresorbable scaffold deployment in idealized straight and curved geometries were performed. WSS was calculated at the inflow, endoluminal surface (top surface of the strut), and outflow of each strut surface post-procedure (stage I) and at a time point when 33% of scaffold resorption has occurred (stage II). The average WSS at stage I over the inflow and outflow surfaces was 3.2 and 3.1 dynes/cm(2) respectively and 87.5 dynes/cm(2) over endoluminal strut surface in the straight vessel. From stage I to stage II, WSS increased by 100% and 142% over the inflow and outflow surfaces, respectively, and decreased by 27% over the endoluminal strut surface. In a curved vessel, WSS change became more evident in the inner curvature with an increase of 63% over the inflow and 66% over the outflow strut surfaces. Similar analysis at the proximal and distal edges demonstrated a large increase of 486% at the lateral outflow surface of the proximal scaffold edge. Conclusions: The implementation of CFD simulations over virtually deployed bioresorbable scaffolds demonstrates the transient nature of device/flow interactions as the bioresorption process progresses over time. Such hemodynamic device modeling is expected to guide future bioresorbable scaffold design. |
format | Online Article Text |
id | pubmed-4355516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Bloomsbury Qatar Foundation Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-43555162015-03-16 Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept Gogas, Bill D. Yang, Boyi Passerini, Tiziano Veneziani, Alessandro Piccinelli, Marina Esposito, Gaetano Rasoul-Arzrumly, Emad Awad, Mosaab Mekonnen, Girum Hung, Olivia Y. Holloway, Beth McDaniel, Michael Giddens, Don King, Spencer B. Samady, Habib Glob Cardiol Sci Pract Research Article Background: Three-dimensional design simulations of coronary metallic stents utilizing mathematical and computational algorithms have emerged as important tools for understanding biomechanical stent properties, predicting the interaction of the implanted platform with the adjacent tissue, and informing stent design enhancements. Herein, we demonstrate the hemodynamic implications following virtual implantation of bioresorbable scaffolds using finite element methods and advanced computational fluid dynamics (CFD) simulations to visualize the device-flow interaction immediately after implantation and following scaffold resorption over time. Methods and Results: CFD simulations with time averaged wall shear stress (WSS) quantification following virtual bioresorbable scaffold deployment in idealized straight and curved geometries were performed. WSS was calculated at the inflow, endoluminal surface (top surface of the strut), and outflow of each strut surface post-procedure (stage I) and at a time point when 33% of scaffold resorption has occurred (stage II). The average WSS at stage I over the inflow and outflow surfaces was 3.2 and 3.1 dynes/cm(2) respectively and 87.5 dynes/cm(2) over endoluminal strut surface in the straight vessel. From stage I to stage II, WSS increased by 100% and 142% over the inflow and outflow surfaces, respectively, and decreased by 27% over the endoluminal strut surface. In a curved vessel, WSS change became more evident in the inner curvature with an increase of 63% over the inflow and 66% over the outflow strut surfaces. Similar analysis at the proximal and distal edges demonstrated a large increase of 486% at the lateral outflow surface of the proximal scaffold edge. Conclusions: The implementation of CFD simulations over virtually deployed bioresorbable scaffolds demonstrates the transient nature of device/flow interactions as the bioresorption process progresses over time. Such hemodynamic device modeling is expected to guide future bioresorbable scaffold design. Bloomsbury Qatar Foundation Journals 2014-12-31 /pmc/articles/PMC4355516/ /pubmed/25780796 http://dx.doi.org/10.5339/gcsp.2014.56 Text en © 2014 Gogas, Yang, Passerini, Veneziani, Piccinelli, Esposito, Rasoul-Arzrumly, Awad, Mekonnen, Hung, Holloway, McDaniel, Giddens, King III, Samady, licensee Bloomsbury Qatar Foundation Journals. This is an open access article distributed under the terms of the Creative Commons Attribution license CC BY 4.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gogas, Bill D. Yang, Boyi Passerini, Tiziano Veneziani, Alessandro Piccinelli, Marina Esposito, Gaetano Rasoul-Arzrumly, Emad Awad, Mosaab Mekonnen, Girum Hung, Olivia Y. Holloway, Beth McDaniel, Michael Giddens, Don King, Spencer B. Samady, Habib Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept |
title | Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept |
title_full | Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept |
title_fullStr | Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept |
title_full_unstemmed | Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept |
title_short | Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept |
title_sort | computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: clinical translations derived from a proof-of-concept |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355516/ https://www.ncbi.nlm.nih.gov/pubmed/25780796 http://dx.doi.org/10.5339/gcsp.2014.56 |
work_keys_str_mv | AT gogasbilld computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT yangboyi computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT passerinitiziano computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT venezianialessandro computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT piccinellimarina computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT espositogaetano computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT rasoularzrumlyemad computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT awadmosaab computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT mekonnengirum computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT hungoliviay computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT hollowaybeth computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT mcdanielmichael computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT giddensdon computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT kingspencerb computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept AT samadyhabib computationalfluiddynamicsappliedtovirtuallydeployeddrugelutingcoronarybioresorbablescaffoldsclinicaltranslationsderivedfromaproofofconcept |