Cargando…

New avenues for phase matching in nonlinear hyperbolic metamaterials

Nonlinear optical processes, which are of paramount importance in science and technology, involve the generation of new frequencies. This requires phase matching to avoid that light generated at different positions interferes destructively. Of the two original approaches to achieve this, one relies...

Descripción completa

Detalles Bibliográficos
Autores principales: Duncan, C., Perret, L., Palomba, S., Lapine, M., Kuhlmey, B. T., de Sterke, C. Martijn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355635/
https://www.ncbi.nlm.nih.gov/pubmed/25757863
http://dx.doi.org/10.1038/srep08983
Descripción
Sumario:Nonlinear optical processes, which are of paramount importance in science and technology, involve the generation of new frequencies. This requires phase matching to avoid that light generated at different positions interferes destructively. Of the two original approaches to achieve this, one relies on birefringence in optical crystals, and is therefore limited by the dispersion of naturally occurring materials, whereas the other, quasi-phase-matching, requires direct modulation of material properties, which is not universally possible. To overcome these limitations, we propose to exploit the unique dispersion afforded by hyperbolic metamaterials, where the refractive index can be arbitrarily large. We systematically analyse the ensuing opportunities and demonstrate that hyperbolic phase matching can be achieved with a wide range of material parameters, offering access to the use of nonlinear media for which phase matching cannot be achieved by other means. With the rapid development in the fabrication of hyperbolic metamaterials, our approach is destined to bring significant advantages over conventional techniques for the phase matching of a variety of nonlinear processes.