Cargando…
The application of sparse estimation of covariance matrix to quadratic discriminant analysis
BACKGROUND: Although Linear Discriminant Analysis (LDA) is commonly used for classification, it may not be directly applied in genomics studies due to the large p, small n problem in these studies. Different versions of sparse LDA have been proposed to address this significant challenge. One implici...
Autores principales: | Sun, Jiehuan, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355996/ https://www.ncbi.nlm.nih.gov/pubmed/25886892 http://dx.doi.org/10.1186/s12859-014-0443-6 |
Ejemplares similares
-
Visualisation of quadratic discriminant analysis and its application in exploration of microbial interactions
por: Gardner-Lubbe, Sugnet, et al.
Publicado: (2015) -
Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
por: Binder, Harald, et al.
Publicado: (2008) -
Model errors in tree biomass estimates computed with an approximation to a missing covariance matrix
por: Magnussen, Steen, et al.
Publicado: (2015) -
Obtaining insights from high-dimensional data: sparse principal covariates regression
por: Van Deun, Katrijn, et al.
Publicado: (2018) -
Fast covariance estimation for sparse functional data
por: Xiao, Luo, et al.
Publicado: (2017)