Cargando…
SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1)
PREMISE OF THE STUDY: Single-nucleotide polymorphism (SNP) marker discovery in plants with complex allotetraploid genomes is often confounded by the presence of homeologous loci (along with paralogous and orthologous loci). Here we present a strategy to filter for SNPs representing orthologous loci....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Botanical Society of America
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356317/ https://www.ncbi.nlm.nih.gov/pubmed/25798340 http://dx.doi.org/10.3732/apps.1400077 |
_version_ | 1782360980193280000 |
---|---|
author | Logan-Young, Carla Jo Yu, John Z. Verma, Surender K. Percy, Richard G. Pepper, Alan E. |
author_facet | Logan-Young, Carla Jo Yu, John Z. Verma, Surender K. Percy, Richard G. Pepper, Alan E. |
author_sort | Logan-Young, Carla Jo |
collection | PubMed |
description | PREMISE OF THE STUDY: Single-nucleotide polymorphism (SNP) marker discovery in plants with complex allotetraploid genomes is often confounded by the presence of homeologous loci (along with paralogous and orthologous loci). Here we present a strategy to filter for SNPs representing orthologous loci. METHODS AND RESULTS: Using Illumina next-generation sequencing, 54 million reads were collected from restriction enzyme–digested DNA libraries of a diversity of Gossypium taxa. Loci with one to three SNPs were discovered using the Stacks software package, yielding 25,529 new cotton SNP combinations, including those that are polymorphic at both interspecific and intraspecific levels. Frequencies of predicted dual-homozygous (aa/bb) marker polymorphisms ranged from 6.7–11.6% of total shared fragments in intraspecific comparisons and from 15.0–16.4% in interspecific comparisons. CONCLUSIONS: This resource provides dual-homozygous (aa/bb) marker polymorphisms. Both in silico and experimental validation efforts demonstrated that these markers are enriched for single orthologous loci that are homozygous for alternative alleles. |
format | Online Article Text |
id | pubmed-4356317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Botanical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-43563172015-03-20 SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1) Logan-Young, Carla Jo Yu, John Z. Verma, Surender K. Percy, Richard G. Pepper, Alan E. Appl Plant Sci Genomic Resources Note PREMISE OF THE STUDY: Single-nucleotide polymorphism (SNP) marker discovery in plants with complex allotetraploid genomes is often confounded by the presence of homeologous loci (along with paralogous and orthologous loci). Here we present a strategy to filter for SNPs representing orthologous loci. METHODS AND RESULTS: Using Illumina next-generation sequencing, 54 million reads were collected from restriction enzyme–digested DNA libraries of a diversity of Gossypium taxa. Loci with one to three SNPs were discovered using the Stacks software package, yielding 25,529 new cotton SNP combinations, including those that are polymorphic at both interspecific and intraspecific levels. Frequencies of predicted dual-homozygous (aa/bb) marker polymorphisms ranged from 6.7–11.6% of total shared fragments in intraspecific comparisons and from 15.0–16.4% in interspecific comparisons. CONCLUSIONS: This resource provides dual-homozygous (aa/bb) marker polymorphisms. Both in silico and experimental validation efforts demonstrated that these markers are enriched for single orthologous loci that are homozygous for alternative alleles. Botanical Society of America 2015-03-09 /pmc/articles/PMC4356317/ /pubmed/25798340 http://dx.doi.org/10.3732/apps.1400077 Text en © 2015 Logan-Young et al. Published by the Botanical Society of America http://creativecommons.org/licenses/by-nc/4.0/ This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA). |
spellingShingle | Genomic Resources Note Logan-Young, Carla Jo Yu, John Z. Verma, Surender K. Percy, Richard G. Pepper, Alan E. SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1) |
title | SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1) |
title_full | SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1) |
title_fullStr | SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1) |
title_full_unstemmed | SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1) |
title_short | SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing(1) |
title_sort | snp discovery in complex allotetraploid genomes (gossypium spp., malvaceae) using genotyping by sequencing(1) |
topic | Genomic Resources Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356317/ https://www.ncbi.nlm.nih.gov/pubmed/25798340 http://dx.doi.org/10.3732/apps.1400077 |
work_keys_str_mv | AT loganyoungcarlajo snpdiscoveryincomplexallotetraploidgenomesgossypiumsppmalvaceaeusinggenotypingbysequencing1 AT yujohnz snpdiscoveryincomplexallotetraploidgenomesgossypiumsppmalvaceaeusinggenotypingbysequencing1 AT vermasurenderk snpdiscoveryincomplexallotetraploidgenomesgossypiumsppmalvaceaeusinggenotypingbysequencing1 AT percyrichardg snpdiscoveryincomplexallotetraploidgenomesgossypiumsppmalvaceaeusinggenotypingbysequencing1 AT pepperalane snpdiscoveryincomplexallotetraploidgenomesgossypiumsppmalvaceaeusinggenotypingbysequencing1 |