Cargando…

Role of ribophorin II in the response to anticancer drugs in gastric cancer cell lines

The identification of prognostic markers and establishing their value as therapeutic targets improves therapeutic efficacy against human cancers. Ribophorin II (RPN2) has been demonstrated to be a prognostic marker of human cancer, including breast and pancreatic cancers. The present study aimed to...

Descripción completa

Detalles Bibliográficos
Autores principales: YUAN, TEIN-MING, LIANG, RUEI-YUE, CHUEH, PIN JU, CHUANG, SHOW-MEI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356382/
https://www.ncbi.nlm.nih.gov/pubmed/25789057
http://dx.doi.org/10.3892/ol.2015.2900
Descripción
Sumario:The identification of prognostic markers and establishing their value as therapeutic targets improves therapeutic efficacy against human cancers. Ribophorin II (RPN2) has been demonstrated to be a prognostic marker of human cancer, including breast and pancreatic cancers. The present study aimed to evaluate RPN2 expression in gastric cancer and to examine the possible correlation between RPN2 expression and the response of cells to clinical anticancer drugs, which has received little research attention at present. The gastric cancer AGS, TMC-1, SNU-1, TMK-1, SCM-1, MKN-45 and KATO III cell lines were used as a model to elucidate the role of RPN2 in the response of cells to six common chemotherapeutic agents, comprising oxaliplatin, irinotecan, doxorubicin, docetaxel, cisplatin and 5-fluorouricil. The functional role of RPN2 was assessed by silencing RPN2 using small interfering RNA (siRNA), and the cytotoxicity was determined by an MTS assay and analysis of apoptosis. Molecular events were evaluated by western blotting. All the anticancer drugs were found to exert a concentration-dependent decrease on the cell survival rate of each of the cell lines tested, although the RPN2 levels in the various cell lines were not directly correlated with responsiveness to clinical anticancer drugs, based on the calculated IC(50) values. siRNA-mediated RPN2 downregulation enhanced cisplatin-induced apoptosis in AGS cells, but did not markedly decrease the cell survival rates of these cells in response to the tested drugs. Furthermore, RPN2 silencing in MKN-45 cells resulted in no additional increase in the cisplatin-induced apoptosis and survival rates. It was also found that RPN2 depletion increased anticancer drug-mediated cytotoxicity in gastric cancer cell lines. However, the predictive value of RPN2 expression in cancer therapy is questionable in gastric cancer models.