Cargando…
Slug contributes to cancer progression by direct regulation of ERα signaling pathway
Hormone therapy targeting estrogen receptor α (ERα) is the most effective treatment for breast cancer. However, this treatment eventually fails as the tumor develops resistance. Although reduced expression of ER-α is a known contributing factor to endocrine resistance, the mechanism of ER-α downregu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356499/ https://www.ncbi.nlm.nih.gov/pubmed/25652255 http://dx.doi.org/10.3892/ijo.2015.2878 |
_version_ | 1782361013648097280 |
---|---|
author | LI, YOUQIANG WU, YANYUAN ABBATIELLO, THOMAS C. WU, WARREN L. KIM, JU RI SARKISSYAN, MARIANNA SARKISSYAN, SUREN CHUNG, SEYUNG S. ELSHIMALI, YAHYA VADGAMA, JAYDUTT V. |
author_facet | LI, YOUQIANG WU, YANYUAN ABBATIELLO, THOMAS C. WU, WARREN L. KIM, JU RI SARKISSYAN, MARIANNA SARKISSYAN, SUREN CHUNG, SEYUNG S. ELSHIMALI, YAHYA VADGAMA, JAYDUTT V. |
author_sort | LI, YOUQIANG |
collection | PubMed |
description | Hormone therapy targeting estrogen receptor α (ERα) is the most effective treatment for breast cancer. However, this treatment eventually fails as the tumor develops resistance. Although reduced expression of ER-α is a known contributing factor to endocrine resistance, the mechanism of ER-α downregulation in endocrine resistance is still not fully understood. The present study shows that Slug has an inverse relationship with ERα in breast and prostate cancer patient samples. Also the inhibition of Slug blocks mammary stem cell activity in primary mammary epithelial cells. We hypothesize that Slug may be a key transcription factor in the regulation of ERα expression. To understand the Slug-ERα signaling pathway, we employed resistant cell line MCF-TAMR (ERα relatively negative) derived from its parental MCF-7 (ERα positive) cell line and assessed changes in cell phenotype, activity and response to therapy. Conversely, we performed knockdown of Slug in the high-Slug expressing cell line MDA-MB-231 and assessed reversal of the mesenchymal phenotype. Microarray analysis showed that Slug is overexpressed in high grade breast and prostate cancer tissues. Additionally, Slug overexpression leads to drug resistance. Furthermore, we demonstrated that Slug binds directly to ERα promoter E-boxes and represses ERα expression. This resulted in decrease in epithelial-to-mesenchymal transition in cancer cells. These findings demonstrate that Slug, by regulation of ERα expression, contributes to tumor progression and could serve as an important target for cancer therapy. |
format | Online Article Text |
id | pubmed-4356499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-43564992015-03-18 Slug contributes to cancer progression by direct regulation of ERα signaling pathway LI, YOUQIANG WU, YANYUAN ABBATIELLO, THOMAS C. WU, WARREN L. KIM, JU RI SARKISSYAN, MARIANNA SARKISSYAN, SUREN CHUNG, SEYUNG S. ELSHIMALI, YAHYA VADGAMA, JAYDUTT V. Int J Oncol Articles Hormone therapy targeting estrogen receptor α (ERα) is the most effective treatment for breast cancer. However, this treatment eventually fails as the tumor develops resistance. Although reduced expression of ER-α is a known contributing factor to endocrine resistance, the mechanism of ER-α downregulation in endocrine resistance is still not fully understood. The present study shows that Slug has an inverse relationship with ERα in breast and prostate cancer patient samples. Also the inhibition of Slug blocks mammary stem cell activity in primary mammary epithelial cells. We hypothesize that Slug may be a key transcription factor in the regulation of ERα expression. To understand the Slug-ERα signaling pathway, we employed resistant cell line MCF-TAMR (ERα relatively negative) derived from its parental MCF-7 (ERα positive) cell line and assessed changes in cell phenotype, activity and response to therapy. Conversely, we performed knockdown of Slug in the high-Slug expressing cell line MDA-MB-231 and assessed reversal of the mesenchymal phenotype. Microarray analysis showed that Slug is overexpressed in high grade breast and prostate cancer tissues. Additionally, Slug overexpression leads to drug resistance. Furthermore, we demonstrated that Slug binds directly to ERα promoter E-boxes and represses ERα expression. This resulted in decrease in epithelial-to-mesenchymal transition in cancer cells. These findings demonstrate that Slug, by regulation of ERα expression, contributes to tumor progression and could serve as an important target for cancer therapy. D.A. Spandidos 2015-02-05 /pmc/articles/PMC4356499/ /pubmed/25652255 http://dx.doi.org/10.3892/ijo.2015.2878 Text en Copyright © 2015, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles LI, YOUQIANG WU, YANYUAN ABBATIELLO, THOMAS C. WU, WARREN L. KIM, JU RI SARKISSYAN, MARIANNA SARKISSYAN, SUREN CHUNG, SEYUNG S. ELSHIMALI, YAHYA VADGAMA, JAYDUTT V. Slug contributes to cancer progression by direct regulation of ERα signaling pathway |
title | Slug contributes to cancer progression by direct regulation of ERα signaling pathway |
title_full | Slug contributes to cancer progression by direct regulation of ERα signaling pathway |
title_fullStr | Slug contributes to cancer progression by direct regulation of ERα signaling pathway |
title_full_unstemmed | Slug contributes to cancer progression by direct regulation of ERα signaling pathway |
title_short | Slug contributes to cancer progression by direct regulation of ERα signaling pathway |
title_sort | slug contributes to cancer progression by direct regulation of erα signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356499/ https://www.ncbi.nlm.nih.gov/pubmed/25652255 http://dx.doi.org/10.3892/ijo.2015.2878 |
work_keys_str_mv | AT liyouqiang slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT wuyanyuan slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT abbatiellothomasc slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT wuwarrenl slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT kimjuri slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT sarkissyanmarianna slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT sarkissyansuren slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT chungseyungs slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT elshimaliyahya slugcontributestocancerprogressionbydirectregulationoferasignalingpathway AT vadgamajayduttv slugcontributestocancerprogressionbydirectregulationoferasignalingpathway |