Cargando…

Bayesian inference for low-rank Ising networks

Estimating the structure of Ising networks is a notoriously difficult problem. We demonstrate that using a latent variable representation of the Ising network, we can employ a full-data-information approach to uncover the network structure. Thereby, only ignoring information encoded in the prior dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Marsman, Maarten, Maris, Gunter, Bechger, Timo, Glas, Cees
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356966/
https://www.ncbi.nlm.nih.gov/pubmed/25761415
http://dx.doi.org/10.1038/srep09050
Descripción
Sumario:Estimating the structure of Ising networks is a notoriously difficult problem. We demonstrate that using a latent variable representation of the Ising network, we can employ a full-data-information approach to uncover the network structure. Thereby, only ignoring information encoded in the prior distribution (of the latent variables). The full-data-information approach avoids having to compute the partition function and is thus computationally feasible, even for networks with many nodes. We illustrate the full-data-information approach with the estimation of dense networks.