Cargando…
Bayesian inference for low-rank Ising networks
Estimating the structure of Ising networks is a notoriously difficult problem. We demonstrate that using a latent variable representation of the Ising network, we can employ a full-data-information approach to uncover the network structure. Thereby, only ignoring information encoded in the prior dis...
Autores principales: | Marsman, Maarten, Maris, Gunter, Bechger, Timo, Glas, Cees |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356966/ https://www.ncbi.nlm.nih.gov/pubmed/25761415 http://dx.doi.org/10.1038/srep09050 |
Ejemplares similares
-
What can we learn from Plausible Values?
por: Marsman, Maarten, et al.
Publicado: (2016) -
Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models
por: Marsman, Maarten, et al.
Publicado: (2017) -
Objective Bayesian Edge Screening and Structure Selection for Ising Networks
por: Marsman, M., et al.
Publicado: (2022) -
Bayesian Inference of Natural Rankings in Incomplete Competition Networks
por: Park, Juyong, et al.
Publicado: (2014) -
Three representations of the Ising model
por: Kruis, Joost, et al.
Publicado: (2016)