Cargando…
Analysis and prediction of defects in UV photo-initiated polymer microarrays
Polymer microarrays are a key enabling technology for the discovery of novel materials. This technology can be further enhanced by expanding the combinatorial space represented on an array. However, not all materials are compatible with the microarray format and materials must be screened to assess...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357255/ https://www.ncbi.nlm.nih.gov/pubmed/25798286 http://dx.doi.org/10.1039/c2tb00379a |
_version_ | 1782361124678664192 |
---|---|
author | Hook, Andrew L. Scurr, David J. Burley, Jonathan C. Langer, Robert Anderson, Daniel G. Davies, Martyn C. Alexander, Morgan R. |
author_facet | Hook, Andrew L. Scurr, David J. Burley, Jonathan C. Langer, Robert Anderson, Daniel G. Davies, Martyn C. Alexander, Morgan R. |
author_sort | Hook, Andrew L. |
collection | PubMed |
description | Polymer microarrays are a key enabling technology for the discovery of novel materials. This technology can be further enhanced by expanding the combinatorial space represented on an array. However, not all materials are compatible with the microarray format and materials must be screened to assess their suitability with the microarray manufacturing methodology prior to their inclusion in a materials discovery investigation. In this study a library of materials expressed on the microarray format are assessed by light microscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to identify compositions with defects that cause a polymer spot to exhibit surface properties significantly different from a smooth, round, chemically homogeneous ‘normal’ spot. It was demonstrated that the presence of these defects could be predicted in 85% of cases using a partial least square regression model based upon molecular descriptors of the monomer components of the polymeric materials. This may allow for potentially defective materials to be identified prior to their formation. Analysis of the PLS regression model highlighted some chemical properties that influenced the formation of defects, and in particular suggested that mixing a methacrylate and an acrylate monomer and/or mixing monomers with long and linear or short and bulky pendant groups will prevent the formation of defects. These results are of interest for the formation of polymer microarrays and may also inform the formulation of printed polymer materials generally. |
format | Online Article Text |
id | pubmed-4357255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-43572552015-03-18 Analysis and prediction of defects in UV photo-initiated polymer microarrays Hook, Andrew L. Scurr, David J. Burley, Jonathan C. Langer, Robert Anderson, Daniel G. Davies, Martyn C. Alexander, Morgan R. J Mater Chem B Chemistry Polymer microarrays are a key enabling technology for the discovery of novel materials. This technology can be further enhanced by expanding the combinatorial space represented on an array. However, not all materials are compatible with the microarray format and materials must be screened to assess their suitability with the microarray manufacturing methodology prior to their inclusion in a materials discovery investigation. In this study a library of materials expressed on the microarray format are assessed by light microscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to identify compositions with defects that cause a polymer spot to exhibit surface properties significantly different from a smooth, round, chemically homogeneous ‘normal’ spot. It was demonstrated that the presence of these defects could be predicted in 85% of cases using a partial least square regression model based upon molecular descriptors of the monomer components of the polymeric materials. This may allow for potentially defective materials to be identified prior to their formation. Analysis of the PLS regression model highlighted some chemical properties that influenced the formation of defects, and in particular suggested that mixing a methacrylate and an acrylate monomer and/or mixing monomers with long and linear or short and bulky pendant groups will prevent the formation of defects. These results are of interest for the formation of polymer microarrays and may also inform the formulation of printed polymer materials generally. Royal Society of Chemistry 2013-02-21 2012-12-20 /pmc/articles/PMC4357255/ /pubmed/25798286 http://dx.doi.org/10.1039/c2tb00379a Text en This journal is © The Royal Society of Chemistry 2012 https://creativecommons.org/licenses/by-nc/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry Hook, Andrew L. Scurr, David J. Burley, Jonathan C. Langer, Robert Anderson, Daniel G. Davies, Martyn C. Alexander, Morgan R. Analysis and prediction of defects in UV photo-initiated polymer microarrays |
title | Analysis and prediction of defects in UV photo-initiated polymer microarrays
|
title_full | Analysis and prediction of defects in UV photo-initiated polymer microarrays
|
title_fullStr | Analysis and prediction of defects in UV photo-initiated polymer microarrays
|
title_full_unstemmed | Analysis and prediction of defects in UV photo-initiated polymer microarrays
|
title_short | Analysis and prediction of defects in UV photo-initiated polymer microarrays
|
title_sort | analysis and prediction of defects in uv photo-initiated polymer microarrays |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357255/ https://www.ncbi.nlm.nih.gov/pubmed/25798286 http://dx.doi.org/10.1039/c2tb00379a |
work_keys_str_mv | AT hookandrewl analysisandpredictionofdefectsinuvphotoinitiatedpolymermicroarrays AT scurrdavidj analysisandpredictionofdefectsinuvphotoinitiatedpolymermicroarrays AT burleyjonathanc analysisandpredictionofdefectsinuvphotoinitiatedpolymermicroarrays AT langerrobert analysisandpredictionofdefectsinuvphotoinitiatedpolymermicroarrays AT andersondanielg analysisandpredictionofdefectsinuvphotoinitiatedpolymermicroarrays AT daviesmartync analysisandpredictionofdefectsinuvphotoinitiatedpolymermicroarrays AT alexandermorganr analysisandpredictionofdefectsinuvphotoinitiatedpolymermicroarrays |